

openHTML: Designing a Transitional
Web Editor for Novices

Abstract
We describe the initial design rationale and early
findings from studies of a web editor for beginners
called openHTML. We explain our strategy of
transitional design that views web editors as a part of a
complex socio-technical system that spans multiple
tools, practices, and actors. Our goal is to create a
toolkit that can engage beginners in meaningful
activities now and prepare them for more sophisticated
activities in the future.

Author Keywords
Learner-Centered Design; Web Development; Code
Editors.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g.,
HCI): User Interfaces: User-centered design.

General Terms
Design, Human Factors.

Copyright is held by the author/owner(s).

CHI 2013 Extended Abstracts, April 27 – May 2, 2013, Paris, France.

ACM 978-1-4503-1952-2/13/04.

Thomas H. Park
College of Info. Science & Tech.
Drexel University
3141 Chestnut Street
Philadelphia, PA 19104 USA
thomas.park@drexel.edu

Ankur Saxena
College of Info. Science & Tech.
Drexel University
3141 Chestnut Street
Philadelphia, PA 19104 USA
ankur.saxena@drexel.edu

Swathi Jagannath
College of Info. Science & Tech.
Drexel University
3141 Chestnut Street
Philadelphia, PA 19104 USA
swathi.jagannath@drexel.edu

Susan Wiedenbeck
College of Info. Science & Tech.
Drexel University
3141 Chestnut Street
Philadelphia, PA 19104 USA
susan.wiedenbeck@drexel.edu

Andrea Forte
College of Info. Science & Tech.
Drexel University
3141 Chestnut Street
Philadelphia, PA 19104 USA
andrea.forte@drexel.edu

Introduction
HCI as a field has long been concerned with designing
technologies for novice users. Diverse approaches to
“learnable” interface design have been explored; for
example, advanced features can be hidden and
complexity can be simplified to help new users ease
into sophisticated software and tasks [4]. We are
exploring the effectiveness of a transitional design to
support novice web developers. Our web editor,
openHTML, allows users to author web pages with
minimal setup and training but without shielding them
from the code, allowing them to become familiar with
the syntax and semantics of HTML and CSS.

The web is a ubiquitous computational environment,
where people from non-technical backgrounds often
develop technical skills and knowledge [5] to meet
varied needs—from a student customizing their blog, to
a business owner requiring an online presence [12].
Basic web development tasks can cause anxiety and
frustration for newcomers. Blackwell notes that markup
languages share many pitfalls of programming: “As
with the use of JavaScript, even the abstractions of
HTML provide the opportunity for syntax errors,
runtime errors, or bugs in the form of unintended or
exceptional behaviors” [2]. Beginners in our preliminary
studies often found HTML and CSS challenging.
Misconceptions about basic concepts such as markup
tags and hyperlinks were common, and quickly stymied
their progress in learning to build websites [10]. In
order to transition from these basic tasks to
sophisticated ones, beginners need support in making
sense of early experiences with web development. This
calls for improved understanding of the difficulties they
experience and how they might successfully be
overcome.

Transitional Design
Our approach to designing the openHTML environment
takes inspiration from the instructional design
literature. Educational technologists are deeply
concerned with supporting novices, and scaffolding is a
commonly cited approach. Scaffolding has two goals:
“(1) to enable learners to achieve a process or goal
which would not be possible without the support and
(2) to facilitate learning to achieve without the support”
[6]. Examples of scaffolded environments include
intelligent tools that track students’ activities and
intervene with feedback when needed and tools that
structure processes and elicit articulation. These are
examples of “within-tool” scaffolding—temporary
support for activities that is carefully designed into a
tool. We are exploring within-tool scaffolding that could
help novice web developers.

It is also important to recognize “between-tool”
scaffolding as a design strategy for supporting novices.
Puntambekar and Kolodner note that scaffolding is not
necessarily a feature of a single tool; rather, it can be
distributed throughout a socio-technical system [11].
We view openHTML as one part of a larger system of
tools and practice that includes not only the immediate
development context, but also the tools and practices
that learners may have access to as their skills become
more advanced. In other words, openHTML itself can be
thought of as a transitional design—support that fades
through disuse when the learner no longer needs it or
wants to accomplish tasks that require a more
sophisticated tool.

We are using an iterative, learner-centered process
[13] to design a web editor that supports novices in
creative exploration of web building and prepares them

to use more sophisticated editors should they choose to
do so. In the next sections, we describe early design
iterations and three rounds of evaluation.

Initial Design of a Web Editor
In this section, we provide a rationale for the design of
openHTML. Our aim for the initial prototype was to
provide support for novice web developers as they
became familiar with HTML and CSS syntax. Our design
was guided by the following principles.

1. Coding is a priority. This provided a useful design
constraint by helping us decide where complexity could
be hidden and where it should be exposed. Web
development encompasses diverse activities, including
non-coding activities like setup of the development
environment and server management, which can be
perceived by novices as barriers to making web pages
[10]. We integrate web hosting with the editor,
reducing the steps between delving into the code and
deploying it online.

2. Iterative learner-centered design. We are interested
in exploring how a web editor can be designed to
support learning and teaching; consequently, we
consider factors like motivation and understanding.
These considerations not only underscore the
importance of providing the low barrier to coding
activities described above, but also compelled us to
avoid a WYSIWYG interface that conceals syntax. We
started with a basic code editor and are studying it in
multiple contexts to discover what kinds of support
beginners need to use such an environment effectively.

3. Sharing and audience are critical. Education
literature suggests that sharing and discussing

interesting creations is central to the learning
experience. In the design of openHTML, we want to
support people in not only making and displaying web
creations, but also in sharing, discussing, and reusing
their source code with one another.

openHTML is a browser-based editor, meaning no
installation is needed to start using it. We built it by
modifying an open-source tool used for JavaScript
debugging called JS Bin [7].

The main edit screen presents three panes: editing
CSS, editing HTML, and previewing the rendered page
(Figure 1). The edit panes provide basic syntax
highlighting and line numbering. By juxtaposing CSS
with HTML and giving them equal visual prominence,
users are encouraged to experiment with CSS and use
it in concert with HTML to style their pages. The
preview updates instantaneously as the user edits code
in the other panes.

openHTML eliminates the need to organize files locally
and upload them to a remote server. Once a page has
been saved, it is immediately accessible to others
online. The code of a web page can also be shared with
other users, who can then make their own copy and
add edits to it. This feature makes it possible to remix
others’ work and for instructors to seed a webpage for
an assignment or tutorial.

Clicking the “Page List” button takes users to a list of
previously created web pages (Figure 2). All revisions
of a web page are saved and can be accessed here; as
in a wiki system, saving revisions reduces the risk
associated with experimentation because previous
versions can always be restored. Users can also join a

group, giving another user like an instructor an
organized overview of the group’s pages.

Figure 1: Editing a page in openHTML with all three panes
open, from left to right: CSS, HTML, and preview.

Figure 2: openHTML “page list” view where users can select a
page to edit or expand a time-stamped list of all revisions for
each page.

Finally, openHTML has been instrumented with fine-
grained logging for research purposes. Keystroke-level
edits are recorded and can be used to reconstruct and
play back coding sessions.

Evaluations
We have conducted three rounds of evaluation: a pilot
test with children at a community center, a lab study
with adult users of different skill levels, and a field
study of novices in a university course. In this extended
abstract, we briefly describe the lab study.

We conducted the lab study to investigate the errors
people make while coding with HTML and CSS, and the
role played by the web editor and other resources in
making and resolving these errors. We recruited 20
participants via paper fliers, Craigslist ads, and postings
on public mailing lists, and gave them twenty dollars
for their time. Participants had diverse backgrounds,
with 5 females and 15 males ranging from 18 to 47
years of age (M=24.4, SD=7.9). All had experience
with HTML, and all but one CSS; additionally, 18 of the
participants had some experience with a programming
language such as JavaScript or PHP.

Participants were invited to the Drexel University
iSchool usability lab and asked to complete five HTML
and CSS coding tasks that resemble assignments in
introductory web development courses. Tasks were
presented in order of increasing difficulty. For instance,
participants were asked to create an ordered list and
sub-list in the first task, a hyperlink and embedded
image in the second task, and a content area and
sidebar in the final task. For each task, participants
were given a set of instructions and a screenshot
showing how the final web page should appear.

The participants were asked to follow a think-aloud
protocol articulating their thought process as they
completed the tasks. They were instructed to complete
the tasks to the best of their ability, using web
searches if necessary. As participants completed the
tasks, audio, video, and actions on the screen were
captured using the software Morae Recorder. The task
study was followed with a brief interview about
participants’ experiences using openHTML. Sessions
lasted between 32 and 91 minutes (M=60.0, SD=15.9)

To understand the challenges that beginner web coders
face and how the web editor supported or failed to
support their efforts, we are using thematic analysis [3]
to identify common errors and recovery activities
across participants. Thematic analysis is an inductive
and iterative process of identifying meaningful patterns
in data that is well suited for making sense of rich,
semi-structured data. We have begun the coding
process by examining all the data and identifying
conceptual themes. Through successive rounds of
analysis, we will classify coding errors and their
underlying causes, as well as recovery strategies and
their effectiveness. This will help us determine where
our next iteration of design efforts will have the
greatest impact.

Preliminary Findings
In this section, we present themes and some design
implications based on our first round of analysis.

Tinkering
When attempting to debug coding errors, participants
often engaged in tinkering — making repeated
modifications to a piece of code in quick succession.
Whether the tinkering indicated playful and productive

“bricolage” [1] or aimless “thrashing” was informed by
the context in which it occurred. For example, tinkering
between multiple valid CSS values demonstrated design
exploration; a web editor might facilitate this through
direct manipulation of a range of values, rather than
repeatedly typing in values. In contrast, tinkering with
CSS property names was often symptomatic of a
breakdown in understanding the semantics of CSS; a
web editor in this case might discourage tinkering and
offer a different form of support.

Web Searches
Participants regularly turned to web searches when
trying to resolve coding errors. Web searches were
extremely code-centric and action-oriented.
Participants frequently ignored explanatory text when
using web resources to understand and correct an
error, instead preferring to navigate directly to code
snippets, paste them into their own code, and
manipulate them within the code editor. These findings
suggest an opportunity to integrate explanations more
closely with code in these resources, or even further,
integrate explanations within the web editor itself.

Latent and Active Errors
Active errors are errors that can be immediately
perceived by the user, while latent errors give no
immediate cue, only manifesting later due to
interaction with other conditions [8]. In our analysis,
we have found it useful to consider the coding errors
made by participants in these terms, as well as when
the participant recognized an error has been made and
which part of the interface provided cues.

With the first iteration of openHTML, active errors
expressed primarily in the live preview (e.g., a syntax

error causing a broken image), although some
participants also relied on the syntax highlighting (e.g.,
unclosed tags). On the other hand, latent errors, which
did not express in openHTML’s interface, occurred often
and would sometimes cascade into a series of
additional errors. While some are syntax errors that can
be detected through validation, others require
techniques such as the uniqueness heuristic, where a
class or ID used only once throughout a project may
indicate an error [9]. Through the design of openHTML,
we are finding new ways of bringing these latent errors
to the surface.

Conclusion
This work describes our initial design of openHTML and
preliminary findings from our evaluation. openHTML
acts as a “between-tools” scaffold, allowing beginners
to quickly build web pages and develop coding skills in
before transitioning to more sophisticated and complex
tools. It also serves as a platform for introducing
“within-tools scaffolding”, through features that support
their learning as novices. Our findings highlight a
number of these design opportunities. Through ongoing
research, we will continue exploring the role that a
transitional web editor can play in giving beginners
positive, productive learning experiences.

Acknowledgements
This work is supported by NSF grant 1152094. We are
grateful for their support.

References
[1] Beckwith, L., Kissinger, C., Burnett, M.,
Wiedenbeck, S., Lawrance, J., Blackwell, A., & Cook, C.
Tinkering and gender in end-user programmers’
debugging. In Proc. CHI 2006, 231-240.

[2] Blackwell, A. First steps in programming: A
rationale for attention investment models. In Proc. HCC
2002, 2–10.

[3] Braun, V. & Clarke, V. Using thematic analysis in
psychology. Qualitative Research in Psychology, 3, 2
(2006), 77–101.

[4] Carroll, J. & Carrithers, C. Training wheels in a user
interface. CACM, 27, 8 (1984), 800-806.

[5] Dorn, B. & Guzdial, M. Discovering computing:
Perspectives of web designers. In Proc. ICER 2010, 23-
29.

[6] Guzdial, M. Software-realized scaffolding to
facilitate programming for science learning. Interactive
Learning Environments, 4, 1 (1995), 1-44.

[7] JS Bin. http://jsbin.com/

[8] Ko, A. & Myers, B. A framework and methodology
for studying the causes of software errors in
programming systems. Journal of Visual Languages and
Computing, 16 (2005), 41–84.

[9] Ko, A. & Wobbrock, J. Cleanroom: Edit-time error
detection with the uniqueness heuristic. In Proc.
VL/HCC 2010, 7-14.

[10] Park, T. & Wiedenbeck, S. Learning web
development: Challenges at an earlier stage of
computing education. In Proc. ICER 2011, 125-132.

[11] Puntambekar, S. & Kolodner, J. Toward
implementing distributed scaffolding: Helping students
learn science from design. Journal of Research in
Science Teaching, 42, 2 (2005), 185–217.

[12] Rosson, M., Ballin, J., & Nash, H. Everyday
programming: Challenges and opportunities for
informal web development. In Proc. VL/HCC 2004, 123-
130.

[13] Soloway, E., Guzdial, M., & Hay, K. Learner-
centered design: The challenge for HCI in the 21st
century. Interactions, 1, 2 (1994), 36–48.

