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ABSTRACT
Web development is a learning context with the potential to support
rich computational thinking. Large-scale analysis of compilation
and runtime errors have been used in introductory programming
courses and similar approaches can be used to understand learning
in web development environments. We investigated activity logs of
a novel web coding game to uncover learning trajectories and what
people struggle with when learning flexible box (flexbox), a collec-
tion of new CSS layout features. We designed a game called Flexbox
Froggy, in which learners solve challenges by writing a few lines of
CSS code, moving from simple levels that require knowledge of one
flexbox property, to complex levels combining multiple properties.
We investigate learning curves based on the changes in syntactic
and semantic errors learners make as they complete the game. Our
findings show that people performed better encountering a single
new property than combined with properties they had already prac-
ticed. Clusters of learners at different levels did not demonstrate
expected error rates based on learning curve theory. Also unexpect-
edly, advanced groups that mastered syntax had higher semantic
error rates than the beginner group, especially when attempting
new properties or complex use cases. We conclude with implica-
tions for designing and developing introductory web programming
games and other instructional materials.
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1 INTRODUCTION
As learning analytics and educational data mining techniques im-
prove and expand, analyzing code-writing data at scale has become
an increasingly productive way to investigate how people learn
programming and what they struggle with. Studies in this space
have used quantitative methods to explore mastery in introductory
computer programming [4, 29, 33], common errors and miscon-
ceptions such as compiler errors [2, 13], and learning behavior
in virtual learning environments such as MOOCs [11, 21], online
communities [1, 7, 10, 34], and games [14, 16].

Web development is one context in which people practice rich
and multi-layered computation. For many, web development is
a first experience in creative computation [8, 30]. Because of its
potential bridging role between early programming exposure and
later mastery [27], web development is a fruitful area of inquiry for
computing education research, but it’s difficult to measure learning
in the often informal, idiosyncratic contexts where people attempt
to solve web development problems. Learning analytics, though
not without limitations, is an interesting approach because we can
develop creative proxies for measuring learning in contexts where
collecting data on learning outcomes is challenging or not possible.

This work presents our preliminary investigation of web pro-
gramming data at scale. We designed an online game to create
playful, motivating experiences with concrete learning goals [20,
22]. Flexbox Froggy (https://flexboxfroggy.com) supports people
in learning Flexible Box (flexbox), a collection of CSS features that
makes it easier to design web pages with responsive layouts. In this
game, people write a few lines of CSS code to guide frogs to lily
pads of matching colors, while gradually exposed to core properties
of flexbox such as aligning content and items. We explored the
changes in learner errors through completion of the game. Learn-
ing curve analysis was employed to model the trajectories of such
learning where the likelihood of error-making is expected to de-
crease over the course of engagement. Clustering was also applied
to understand aggregate patterns of learning. Our investigation
was guided by the following research questions:

(1) How can we measure learning based on users’ successes and
failures at different game levels?

(2) How can knowledge components and learning curves be
modeled in this context?

(3) What patterns of behavior emerge as people progress to
increasingly difficult levels?
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2 RELATEDWORK
This paper builds on three areas of computing education: 1) web
development, 2) educational games, and 3) learning analytics. Liter-
ature on web development as a context for computational learning
examines formative experiences andmisconceptions. Early work ex-
amined the established practices and conceptions of web developers
[8, 30] and uncovered computational features that novice and non-
programmers frequently struggle with such as hyperlinks [9, 28]
and nesting [23, 24]. Visual layout was found to be difficult for both
beginning and experienced programmers [23, 27, 30]. WYSIWYG
interfaces are reported to construct unproductive mental models
which could block a later sense of mastery [26].

Educational games research explores how to provide authen-
tic, playful experiences for learning computation. Some research
stresses creating gaming environments with explicit instructional
goals [16, 18]. Others focus on providing game-like environments
where people learn through exploration, tinkering, and creation
of personally meaningful projects [6, 19, 32]. These platforms are
often designed for informal learning opportunities. Environments
that provide open-ended, unstructured environments require learn-
ers to sustain high levels of motivation while they master the basic
but often challenging coding skills necessary to create interesting
projects. In our game design efforts, we aim to provide an enjoyable
gaming experience with clear goals [15, 19] to foster motivation
and understanding and, in turn, elicit prolonged engagement in
learning computational features.

The third literature we leverage is the growing body of learning
analytics and educational data mining research focused on under-
standing computing education through large scale analysis of trace
data. Such studies have investigated compilation and runtime errors
[2, 13], coding patterns [12, 29, 35] of novice programmers [3, 4, 33]
and structured computational learning in various environments
[11, 17, 21]. Others have explored learning computation in online
communities given manipulative toolkits [1, 7, 10, 34]. In order to
uncover significant trajectories of learning, these studies employed
a variety of quantitative techniques such as learning curve anal-
ysis, error quotient, and machine learning. In this work, we aim
to identify quantitative analytics that can be applied to large-scale
code-writing data generated by learners.

3 METHOD
3.1 Design of Flexbox Froggy
Flexbox Froggy is designed to challenge learners to solve simple
puzzles by writing CSS code. We were inspired by computer liter-
acy games such as Gidget, CSS Diner, and Erase All Kittens where
people learn about various computational features while solving
problems. We chose flexbox because it is a new module and there-
fore relevant for both beginners and experienced web developers,
additionally, both novice and expert programmers struggle with
web layouts [23, 27, 30].

In Flexbox Froggy, users learn flexbox’s eight core properties,
namely, justify-content, align-times,flex-direction, order, align-
self, flex-wrap, flex-flow, and align-content through 24 levels.
Most levels have one or two solutions. The game marks solutions
correct based on the position of the frogs. We designed levels to
provide a smooth learning curve, flat in the beginning so as not to

Figure 1: Game Interface with Code Submission

intimidate learners, and then gradually ramp up the challenge. The
last level is treated as the final "boss level" and combines nearly all
the CSS properties learners have encountered, providing a tougher
challenge and hopefully a sense of accomplishment when solved.
The first level introduces justify-content, one of most basic proper-
ties and its values. Next, learners are exposed to the same property
again in another straightforward use case, which leads to a more
complex use case. Learners then explore the next property and its
use cases, with subsequent levels eventually combining multiple
properties.

Figure 1 shows the game’s interface, which mainly consists of
two panes: 1) left pane for in-game reference and code completion
and 2) right pane for instant assessment of code-writing. The left
pane features a reference guide, instructions and explanations of
each stage, property, and value. Reference material is also available
in context as tooltips. The code editor provides a partial structure to
be completed by users who submit a CSS code snippet by clicking
"next." Learners can proceed to next levels only if the current level
is solved. Completed levels can be revisited using navigation at
the upper-right. The right pane updates as the users edit code to
provide within-tool scaffolding in the form of immediate feedback
to aid with debugging [18, 25]. If a submitted answer is correct, the
frog appears on the lily-pad. If not, the entire screen trembles.

3.2 Data Collection and Processing
Flexbox Froggy is playable in a browser and requires no registration.
We did not directly recruit players. Upon release of the game, it
was registered to Hour of Code on Code.org. Hacker News and
some subreddits featured it, and it is still shared on a regularly
on Twitter. We collected anonymous data related to completion of
game tasks, input of correct and incorrect answers, and completed
levels. To distinguish unique learners, we assigned a random al-
phanumeric token to each learner based on browser information
and epoch time of first access. We collected 4,865,200 submitted
answers by 9,980 unique learners. Then, subpopulation who com-
pleted all levels was selected, which reduced the submissions to
2,293,681. We considered the level complete once a user submitted a
correct answer and discarded subsequent submissions for the same
level. Thus, the data was reduced to 2,152,670 answers submitted by
5,520 unique users. We evaluated keystroke-level feedback about



Table 1: Game Levels and Knowledge Components

Level Properties Knowledge Components
1 justify-content horizontal alignment
2 justify-content horizontal alignment
3 justify-content horizontal alignment
4 justify-content horizontal alignment
5 align-items vertical alignment
6 justify-content horizontal alignment

align-items vertical alignment
7 justify-content horizontal alignment

align-items vertical alignment
8 flex-direction horizontal direction
9 flex-direction vertical direction
10 justify-content horizontal alignment

flex-direction horizontal direction
11 justify-content horizontal alignment

flex-direction vertical direction
12 justify-content horizontal alignment

flex-direction vertical direction
13 justify-content horizontal alignment

align-items vertical alignment
flex-direction horizontal direction

14 order horizontal order
15 order horizontal order
16 align-self vertical order
17 order horizontal order

align-self vertical order
18 flex-wrap horizontal wrapping
19 flex-direction vertical direction

flex-wrap horizontal wrapping
20 flex-flow vertical direction

horizontal wrapping
21 align-content horizontal alignment
22 align-content horizontal alignment
23 flex-direction vertical direction

align-content horizontal alignment
24 justify-content horizontal alignment

flex-direction vertical direction
flex-wrap horizontal wrapping
align-content horizontal alignment

syntactic and semantic errors through the W3C CSS Validation Ser-
vice (http://www.css-validator.org); an answer is tagged as having
a syntactic error if its result is incorrect and validity returns false. If
it is incorrect while validity is true, the answer was regarded as hav-
ing a semantic error. Based on this validation, the data set ended up
having 48 feature dimensions, according to the number of syntactic
and semantic errors per level. To build better fitting learning curve
and clustering models, we used the interquartile range to remove
outlying learners based on the total number of code submissions,
which yielded a final data set of 1,775,039 answers submitted by
5,282 unique users.

3.3 Learning Curve Analysis and Clustering
Learning curve analysis is an approach that models learners’ per-
formance over time. Based on the power law of practice underlying
this approach, the probability that a learner will make an error is
expected to decrease as they repeatedly practice a target knowledge
component (KC) [5]. In intelligent tutoring where learning curve
analysis is often used to estimate student performance, problems
are easily broken down into multiple smallest units of action [31].
However, it is less clear what is a meaningful unit of action in our
data. Before applying learning curve analysis to our data, therefore,
we need to define knowledge components. Table 1 describes the
properties expected to be learned at each game level. As described,
we designed the game to have learners practice different proper-
ties in multiple levels. Failing a given level does not necessarily
mean that every knowledge component represented in the code
is incorrect, only a subset may be incorrect. Therefore, each level
was tagged with one or more knowledge components intended to
practice. Just as submissions can be measured for correctness, each
of the knowledge components can also be analyzed for changes in
correctness over time.

Clustering is an unsupervised machine learning technique that
uncovers latent structure in data without ground truth or a priori
idea of what should be found. In learning analytics, clustering is
used to identify groups of learners that share characteristics. As
discussed in Related Work, a range of clustering algorithms such as
hierarchical clustering, k-means clustering, and EM algorithm have
been applied to code-writing data. To investigate collective trajecto-
ries of learning, we employ the k-means++ algorithm implemented
in scikit-learn, a widely used Python machine learning library. We
decided to use k-means++ over regular k-means as the latter is more
sensitive to initial cluster centroid seeds. An individual learner’s
syntactic and semantic errors at each level were considered as fea-
ture dimensions. Then, we investigated the existence of different
learning trajectories and characteristics per group.

4 RESULTS
4.1 Patterns between Syntax and Semantics
Figure 2 illustrates patterns of syntactic and semantic errors per
level. The upper figure shows a stacked mean error rate chart,
the lower one depicts a ratio column chart between two types of
errors. Syntactic errors take up the largest fraction of incorrect
submissions. As expected, learners struggled most with the final
"boss" level. Unexpectedly, mean error rates in total do not decrease
as the users move on to more advanced levels. Moreover, the ratios
of semantic errors tend to increase and jag even though learners
have hadmore opportunities to practice the properties of the flexbox
module. These patterns violate our expectations of learning curve
analysis described in the methodology section. Instead of a smooth
curve, we found that learners struggled more than expected as they
encountered familiar properties in new configurations.

4.2 Finding Homogeneous Trajectories
Any variant of k-means algorithms requires a manual selection
of the number of clusters. To find an optimal k, we examined the
changes in within-cluster sum of squared error by increasing k



Figure 2: Syntactic and Semantic Errors. Stacked Rate Chart
(Upper) and 100% Stacked Ratio Chart (Lower)

ranging from 1. As shown in Figure 3 upper, increasing the number
of clusters beyond 3 minimally affects the error values. To validate
the consistency within clusters of data given 3 and 4 as candidate
ks, we investigated the silhouette coefficient, using the Euclidean
distance (See Figure 3 lower). Given the silhouette ranges between
-1 and 1, the learner groups showed a clearer homogeneity when 3
is chosen as the number of clusters. Based on these observations,
3 was chosen as the number of clusters. In order to build a final
model, k-means++ was run 500 times on the 48 feature dimensions
of 5,282 users and the model with the least within-cluster sum of
squared error was used.

First, we wanted to see learning trajectories and curves for the
whole data set. As described, trajectories were expected to start
with a high error intercept, curve downwards, and then plateau
near a zero-error rate as users acquire the mastery. Figure 4 top dis-
plays the trajectories of learners considering the average rate of all
types of errors per level. Based on error trends, we labeled learners
in three groups: Gr1 (n=1,892), Gr2 (n=1,546), and Gr3 (n=1,844).
Learning curves corresponding to each cluster are also rendered.
As illustrated in the figure, three groups of learners show similar
patterns of rising-falling-rising learning curves which do not match
the general expectations above. They start with an increasing curve
over the first seven levels. Even after repeated opportunities to
practice the same KC groups, the number of errors tends to in-
crease. One interpretation is that flexbox is a new concept to both
the novice programmer and the experienced developer; however,
it is surprising that better performing learner groups, i.e. Gr2 and
Gr3, would not exhibit transfer from experience with other, similar

Figure 3: Changes in Within-cluster Sum of Squared Error
(Upper) and Silhouette Coefficient at 3 as k (Lower)

CSS properties. After declining for levels 8 and 9, the errors spike
between the 10th and 13th levels. This indicates the learners were
most challenged when multiple KCs were combined despite prior
exposure to the properties and values. Afterwards, the errors de-
cline and increase again. While Gr1’s low error rate persists when
practicing a new property (order) at the 14th level, Gr2 and Gr3
error rates spike. Overall, all the groups share indistinct patterns
with little arithmetic difference and almost no persistent learning
curves.

The rest of the subfigures depict learning trajectories and curves
by error types. Syntactic errors show good learning curves that
decrease and plateau over time (See Figure 4 middle). In these learn-
ing curves, the error rates start between 70% and 80%, high enough
to indicate that around three out of four learners struggle with
the KC at the first attempt. Although Gr2 and Gr3 have spikes in
error rates when moving from level 14 to 15 (See Figure 4 top),
their syntactic error rates decreased (See Figure 4 middle). Instead,
semantic error rates spike (See Figure 4 bottom). While trajecto-
ries with syntactic errors show good learning curves, the learning
trajectories and curves derived from semantic errors add richer
interpretations to the findings: even though learners get familiar
with syntactic operations such as declaring relevant properties and
assigning syntactically acceptable values, they still struggle with
assigning proper values.

4.3 Learning Curves and Clusters by KCs
Although our findings do not match what we expected based on
learning curve theory, this does not necessarily invalidate these



Figure 4: Learning Curves for All Levels: All (Top), Syntactic
(Middle), and Semantic (Bottom) Errors

models. Instead, we suggest that investigating learning patterns
and trajectories in a game that relies on accumulative knowledge
components requires interpreting the game as a more complex
learning experience with additional dimensions. Toward that end,
we categorized levels in two KC groups based on similarity of visual
operations, namely 15 levels that involve alignment and 10 that
involve direction.

Figure 5 shows learning curves for the 15 levels in the alignment
KC group, sequentially ordered. The uppermost figure shows rising-
falling learning curves including all types of errors for each learner
group; notably there are almost no clear learning trajectories that
suggest mastery. All learner groups show similar patterns rising at
the end. Learning curves by error type are depicted in the middle
(syntactic errors) and bottom (semantic errors) for the alignment KC
group. In these cases, all of the groups show good learning curves
for syntax that slope downwards over time (See Figure 5 middle).

It is notable that although syntactic errors decrease, semantic error
rates increase as the learners encounter more complex use cases;
additionally, Gr1 struggle more with syntax while Gr2 and Gr3
make more semantic errors (See Figure 5 bottom).

Figure 6 illustrates learning curves for the 10 levels in the direc-
tion KC group. Again, combining error types shows jagged learn-
ing curves for all types of learners, indicating no clear learning
trajectory (See Figure 6 top). The middle and bottom figures depict
learning curves by error types, demonstrating again that all the
groups show good learning curves in mastering syntax (See Figure
6 middle). Semantic error rates keep jaggedly increasing despite
opportunities to practice, with Gr3 exhibiting the most errors (See
Figure 6 bottom).

5 SUMMARY AND DISCUSSION
In this paper we explored the quantitative generation of KC models,
learning curves, and learner clusters with the code-writing data
submitted to a web development game. We investigated the efficacy
of models generated using all errors versus two discrete error types
(syntax and semantic) and explored knowledge component groups
as an additional strategy for understanding learning curves. We
identified three distinct user groups that we labeled Gr1, Gr2 and
Gr3. Models inclusive of both types of errors showed learning
curves that tended to rise-fall-rise, indicating no clear learning
trajectory. While the different learner groups had similar learning
patterns, the learner groups who performed better over the entire
course of levels, namely Gr2 and Gr3, struggled more with the
semantic operations, especially in levels with new properties or
more complex use cases. Overall, all groups of users were generally
found to have good learning curves in syntactic manipulation as
they were exposed to more opportunities to practice the properties.
Contrary to learning curve theory, however, the general learning
curves did not show the expected reduction in error rate. This led us
to examine patterns by the KC groups, i.e. alignment and direction.
The results showed Gr1 performed better when challenged with
complex combinations of KCs and all learner groups showed clear
learning trajectories in practicing syntax.

Our efforts to employ learning curve analysis and clustering
in analyzing web programming data can be used to consider the
design of instructional materials and games that introduce learners
to syntactic and semantic knowledge components. Although learn-
ers demonstrated increased proficiency with syntax while learning
new knowledge components, our findings suggest that when intro-
ducing combinations of components, learning trajectories become
less easily identified.

Based on these experiences, we identified several opportunities
to refine our instruments as well as data collection. The fact that
the learners semantically struggled with complex use cases in spite
of multiple exposure to the same KC groups might be a sign that the
skill required to use a single layout operation is different from the
skill of combining multiple components, and that the two should
be separated into different KCs (and taught as separate concepts
as well). In addition, to stabilize learning curves, a prep session or
lengthier level design as well as greater quantity and variety in
the use cases may be required. Finally, we could experiment with
features like code mirror and syntax highlighting.



Figure 5: Learning Curves for Alignment: All (Top), Syntac-
tic (Middle), and Semantic (Bottom) Errors

Limitations of this work include the absence of observational
or other data to aid in our interpretations and the restricted con-
text of Flexbox Froggy as a learning environment. In future work,
we plan to expand our work in the context of another introduc-
tory web programming game. We also seek a clear explanation
for extreme outlier data. In continuation of this work, we aim to
compare complete and incomplete sequences of learner actions
with keystroke-level learning behavior modeling to further under-
stand learner-generated web coding data as a resource for learning
analytics.
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