
Towards a Taxonomy of Errors in HTML and CSS
Thomas H. Park, Ankur Saxena, Swathi Jagannath, Susan Wiedenbeck, Andrea Forte

College of Information Science and Technology
Drexel University

3141 Chestnut Street
Philadelphia, PA 19104, USA

{thomas.park, ankur.saxena, swathi.jagannath, susan.wiedenbeck, aforte}@drexel.edu

ABSTRACT
As part of a larger research agenda to explore web development as
a context for learning computational literacy skills, we investigate
errors people make while writing code in HTML and CSS. We
report on a lab-based study in which 20 participants were video
recorded as they completed coding tasks. We have applied the
skills-rules-knowledge framework to segment this data by the
cognitive causes of errors they made, and present a taxonomy of
these errors. Our findings demonstrate how the skills-rules-
framework can be used to analyze coding errors, provide insight
about the origins of these errors, and suggest ways that the design
of web development tools can be improved to support learning
and practice with HTML and CSS.

Categories and Subject Descriptors
K.3.2. [Computers and Education]: Computers and Information
Science Education—computer science education

General Terms
Design, Human Factors

Keywords
Computing education, errors, web development

1. INTRODUCTION
Building web pages is not easy. Although markup languages may
not be considered as computationally expressive as many other
languages, Blackwell notes that they possess many of the pitfalls
of programming: “even the abstractions of HTML provide the
opportunity for syntax errors, runtime errors, or bugs in the form
of unintended or exceptional behaviors” [2]. Beginners who learn
HTML and CSS encounter many opportunities to learn from the
process of authoring code for a computer to interpret, making
mistakes along the way, and recovering from those mistakes.

Much research examines the difficulties novices have learning to
program, with the goal of better supporting learners; however, the
errors people make while writing HTML and CSS are largely
unexamined. We view this as an important gap in the literature.
For many people, HTML and CSS provide a first exposure to
creative computation. Insurmountable difficulties can discourage

beginners, while bad habits and misconceptions here may limit
what can be learned from such an experience. On the other hand,
positive, productive experiences can serve as a stepping-stone to
sustained and deepening engagement with computing [15].

In this study, we seek to identify the errors people make while
writing code in HTML and CSS, and examine the cognitive
origins of these errors. These findings are instrumental in our
continuing efforts to design a web editor for beginners that is a
pedagogically superior alternative to existing tools.

The balance of our paper is organized as follows. Section 2
reviews prior research on programming errors and web
development. Section 3 describes our task study and our use of the
skills-rules-knowledge framework to analyze our data. Section 4
details three examples of the coding errors we observed, and
presents a taxonomy of HTML and CSS errors. Finally, section 5
discusses our findings in relation to education and designing
systems to support beginners.

2. RELATED WORK
There is a large body of literature that examines and describes the
kinds of coding errors people make, their strategies for recovering
from such errors, and the role that errors play in learning to code.
As Spohrer and Soloway [16] observed, “All bugs are not created
equal. Some bugs occur over and over again in novices’ programs,
while others occur rarely.”

Spoher and Soloway’s remark was based on a study of
syntactically correct programs written by students in Pascal,
where the researchers cataloged 101 different bug types and found
that 10 percent of bug types accounted for between 32 and 46
percent of observed bug instances. They found that despite the
conventional wisdom that most bugs are due to misconceptions
about the semantics of language constructs, the majority arose
when the students encountered boundary conditions or
interactions between different pieces of code. Anderson and
Jeffries [1] confirmed that even increasing the complexity of
irrelevant aspects of a programming problem leads to more errors.
In their study of students programming in LISP, they found that
these errors stem mostly from slips such as forgetting parentheses,
rather than enduring misconceptions.

Turning their attention to errors children make using a natural-
language-style programming language, Bruckman and
Edwards [4] offered their own classification scheme organized
into seven categories. According to this scheme, they found that
most errors involve object manipulation, command-line syntax,
and typos. Youngs provided a broader investigation into
programming errors by classifying errors made in a variety of
languages by 42 programmers, both novice and expert, in terms of
statement type (e.g., assignment, iteration), depth of
understanding needed to correct the error (e.g., syntax, semantic,
logic), the manifestation of the error (e.g., formatting, omission,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
ICER’13, August 12–14, 2013, San Diego, California, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2243-0 /13/08…$15.00.
http://dx.doi.org/10.1145/2493394.2493405

75

illegal operation), and the system response [18]. He reported that
beginners struggle most with semantic errors, while syntax,
semantic, and logical errors occur in roughly equal proportion for
experts. Finally, Ko and Myers have conducted an exhaustive
review of studies of programming errors in [7].

Errors have also been studied in programming more broadly
defined. For instance, Panko [10] reviewed 13 studies of errors
people make while developing spreadsheets, and proposed a
taxonomy of quantitative errors, which give an incorrect result,
and qualitative errors, which are broken down further into
mechanical errors such as mistyping a number, logic errors that
result from a mistake in reasoning, and omission errors where
something is left out. In the reviewed studies, all error types were
made regularly, although logic and omission errors occurred more
frequently and were more difficult to detect by spreadsheet
developers than mechanical errors.

The domain of web development has received less attention from
researchers. Désilets et al. [5] observed wiki usage in grade 4
classes and described children’s frequent errors with the syntax
and semantics of hyperlinks. Miller et al. [9] presented a
classification of the errors college students made in referencing
resource files such as a link or image when coding webpages.
Rather than focusing on errors, Dorn and Guzdial [6] employed
card-sorting tasks to assess the programming knowledge of
professional web developers.

Park and Wiedenbeck used content analysis to examine online
forums for an introductory web development course, in order to
understand what concepts and tasks proved difficult for beginner
web developers [12]. This work revealed that early barriers to
successful web coding experiences are diverse: problems arising
from writing and testing code were most common (34 percent);
however difficulties related to the instructional and technological
environment were not far behind (30 and 25 percent respectively).

The findings from [12] inspired us to begin work on a web editor
specially designed for learners. However, despite the wealth of
literature on programming errors, we lacked a detailed
understanding of the errors people are likely to make when
attempting to write HTML and CSS. Moreover, we had ideas
about scaffolding that might support learners, but lacked
empirically grounded accounts of what causes people to make
errors and how such errors could be productively overcome. This
led us to ask:

 What errors do people make when constructing web pages in

HTML and CSS?
 What are the sources of these errors?
 Once made, how well do people recover from such errors?

3. METHODS
In order to collect the detailed observations necessary to
understand the errors people make when constructing HTML and
CSS and why, we conducted a lab-based study. We observed and
recorded 20 participants as they completed a set of HTML and
CSS coding tasks using a think-aloud protocol. We then used
open and axial coding processes to analyze video and screen
capture data to construct a taxonomy of errors.

3.1 Participants
To capture as broad a sample of errors as possible, we sought
participants with a wide range of experience in HTML and CSS
and did not exclude any background or profession. We used a

variety of recruitment tactics from announcements in beginner
web development classes, to flyers posted on university campuses,
to a classified ad in the web design section of Craigslist.
Participants were offered $20 for their time.

A total of 20 people, 7 female and 13 male, took part in the study.
Their ages ranged from 18 to 47 (M=24.4) and their backgrounds
included digital media, environmental science, business, and art.
The two participants who indicated web design as their profession
stated that they relied on content management systems like
Wordpress to do their work, and did not practice a great deal of
coding. In addition to HTML and CSS, 17 of the 20 participants
reported some programming experience. The participants are
described more fully in Table 5.

3.2 Protocol
In order to provide a consistent experience for all participants and
to record the sessions, participants were invited to our usability
lab and asked to complete a set of five coding tasks involving
HTML and CSS. The tasks were preceded with a questionnaire
and brief interview that collected information on demographics
and prior experience. For example, participants were asked to rate
their own expertise with HTML, CSS, and any programming
languages as no experience (0), beginner (1), intermediate (2), or
advanced (3). As in the earlier studies of programming errors, we
expected expertise to be a significant factor in their outcomes.

Participants used the first iteration of our web editor, openHTML,
to complete the tasks (see Figure 1). Our design strategy is to
begin with the simplest possible environment and use an iterative
approach to extend it with added functionality as we learn about
what learners need and want [11]. This approach made the first
version of openHTML an ideal environment for the study since
the editor is as simple as we could make it, lacking the bells and
whistles of more complex editors. Moreover, all participants were
equally unfamiliar with the tool. Participants were given an
orientation to openHTML before the study began.

Figure 1. openHTML, the web editor used in the study. The

interface displays panes CSS, HTML, and live preview.
For each coding task, we gave participants printed instructions
containing multiple sub-goals as well as an image depicting the
expected output of the rendered web page. We asked them to
complete tasks to the best of their ability using whatever resources
they would normally use, including web searches. We explained
the think aloud protocol and encouraged participants to vocalize
their thought processes as they completed the tasks. A maximum
of 30 minutes was provided for each task, and participants were
allowed to end a task at any time. After each task, we asked
follow-up questions to clarify their understanding and intent. At
the end of each session, we asked a series of follow-up questions
designed to probe understanding of basic computational concepts.
Sessions were video recorded; participants averaged

76

approximately 38 minutes of coding activity, totaling over
12 hours of video data overall.

3.3 Participant Tasks
Participants completed 5 tasks that involved writing or modifying
HTML and CSS. We piloted the tasks to ensure that participants
could complete them in 10 to 15 minutes. The tasks were also
designed to provide broad coverage of HTML and CSS
constructs, setting a low floor and steadily increasing in
sophistication. For all of the tasks, the HTML pane was seeded
with boilerplate code for the HTML5 document type declaration
and html, head, title, meta	 charset, and body tags;
additional code was seeded for Task 3 requiring the code to be
extended, and Task 4 requiring three bugs to be fixed. The tasks
are summarized in Table 1.

Table 1. The coding tasks.

Task Requirements

1

a) Create a heading
b) Create a paragraph
c) Create an ordered list
d) Create an ordered sub-list

2
a) Embed a hyperlink
b) Embed an image
c) Make the image into a hyperlink

3

a) Center the text alignment in the provided table
b) Set the background color of the rows with “pro”

text to green and the “con” text to red
c) Color the provided hyperlink green
d) Color the provided hyperlink red on hover event

4
a) Find and fix bug 1: broken image
b) Find and fix bug 2: unclosed tag
c) Find and fix bug 3: unmatched CSS selector

5

a) Create a container div
b) Position the container div in the center horizontally
c) Create a sidebar div
d) Position the sidebar div inside the container div on

the right

3.4 Data Analysis
Two researchers coded video data in three iterative rounds using
the software Morae. The researchers did not apply a pre-
determined codebook; rather, the goal was to use the coding
exercise as a way of developing an inventory of errors. As the two
coders worked together, they reconciled disagreement through
further discussion and, in this way, converged on a shared
conceptual vocabulary.

In the first round of coding, every occurrence of an error was
marked. In alignment with Youngs’ definition of programming
errors [18], we defined errors as code written by the participant
with invalid syntax, or that resulted in actual or potential output
(webpage rendering) that was not desirable according to the task
or the participant’s interpretation of that task. A total of 791 errors
were identified. In this initial round, we immediately classified
463 errors as being typographical in nature and immediately
resolved (e.g., misspelling a word and then correcting it without a
substantial time delay or shift in attention), since they were
deemed trivial and constituted a majority of instances.

Table 2. The coding scheme for errors.

Code Values
Level skill, rule, knowledge
Type typo, obsolete construct, css selectors, etc.

Resolution resolved, unresolved, bypassed

In the next round of coding, we classified the remaining 328
errors based on our emergent coding scheme, which was informed
by the skills-rules-knowledge framework, a hierarchical model of
human behavior organized in terms of cognitive effort [13].
Reason offers a thorough treatment of the skills-rules-knowledge
framework in [14], which helped us consider the type of cognitive
breakdowns at the root of each error:

• Skill-based behaviors, such as typing, are “sensory-motor
performance[s] tak[ing] place without conscious control as
smooth, automated, and highly integrated patterns of
behavior.” Errors at this level are the result of unintended
actions from physical slips, inattention, or mode confusion.

• Rule-based behaviors are comprised of “a sequence of
subroutines in a familiar work situation… typically
controlled by a stored rule or procedure.” Rule-based
behavior is guided by conscious and goal-oriented planning.
Errors here result from intentional actions driven by the
application of bad rules or the misapplication of previously
good rules to exceptional circumstances.

• Knowledge-based behaviors occur at a higher conceptual
level when a person faces an unfamiliar situation that
necessitates ad-hoc experimentation and problem solving.
Errors at this level, or more aptly “breakdowns,” result from
an incomplete or inaccurate understanding of the situation.
Typically, multiple errors are made in succession, entwined
with experimentation and information searches.

We assigned each of the errors to one of these three levels. In
order to make this assignment, we relied not only on observed
coding behavior but other cues, including the participants’
verbalizations while coding, their reactions when errors were
detected and resolved, and, importantly, their strategies for
resolving them. For instance, a web search could be used to
remember complicated syntax, suggesting rule-based behavior, or
for just-in-time learning of a broader topic [3], typical for trying to
address a knowledge-based breakdown. Table 3 outlines the
heuristics that we applied during this part of coding.

Table 3. Heuristics based on [14] used to classify errors as
occurring at the skill, rule, or knowledge-based levels of

performance.

 Skill Rule Knowledge

Types of
Activity

Quick, routine
actions

Simple if-
then rules

Slow,
information

seeking

Control
Mode

Mainly by
automatic
processes

Mainly by
automatic
processes

Limited,
conscious
processes

Perception Feedforward Feedforward Feedback

Intention Unintended
actions

Intended
actions

Intended
actions

Solution Indicator of
existence

Brief
explanation

Extensive
learning

77

We developed a detailed taxonomy of error types at each of the
three levels through an inductive, data-driven process. At the
skill-based level, errors tended to be simple, such as forgetting to
type a semicolon. At the rule-based level, errors became more
complex, for example using an attribute that has been deprecated.
Knowledge-based level errors proved to be the most complex,
such as a complete lack of understanding of the positioning
model, which determines how elements are laid out in relation to
each other on the web page. We also coded whether errors were
ultimately resolved, unresolved, or bypassed in favor of a
different approach. In the second and third rounds of analysis, we
reviewed the codes and made refinements where needed.

4. FINDINGS
Participants averaged 39.6 errors per session (including all tasks)
(SD=15.0), ranging from 15 to 63. Breaking down completion
time and error count by task (Table 4) reveals a rough trend of
increasing time and errors, although as we will see in later
sections, not all errors are created equal. Task 4 required fixing
existing code rather than writing new code, which may partially
explain the low completion times and error counts.

Table 4. Mean task completion time in minutes and
error count for each task.

Task	 1	 2	 3	 4	 5	
Time	
(SD)	

5.42	
(4.61)	

5.94	
(3.96)	

9.40	
(5.56)	

6.51	
(4.62)	

10.95	
(5.69)	

Errors	
(SD)	

7.55	
(4.75)	

6.70	
(4.26)	

7.85	
(5.44)	

4.20	
(4.12)	

13.25	
(8.16)	

In this section, we describe three cases in detail, representing
errors at the skill-based, rule-based, and knowledge-based level.
We then present a taxonomy of HTML and CSS errors based on
all of the errors we observed.

4.1 A Tale of Three Errors
4.1.1 Skill-Based Error
Participant 15, a 41-year-old web designer, is working on
embedding an image in Task 2, which instructs that he include an	
alt attribute that specifies alternate text when the image cannot
be found. The correct code should resemble the following:

<img	 src="http://constitutioncenter.org/	
images/ui/logo-‐ncc.gif"	 alt="My	 Image"	 />

However, Participant 15 forgets the opening quote in the alt
attribute’s value.

<img	 src="http://constitutioncenter.org/	
images/ui/logo-‐ncc.gif"	 alt=My	 Image"	 />	

After examining the code for a minute, he finally spots the source
of the error, exclaiming, “Oh! That’s it,” before fixing it. Despite
successfully enclosing values with quotes numerous times before
and after this instance, he makes a skill-based error here, whether
due to cognitive overload, inattention, or a slip of the finger. In
this case, merely signaling the presence of the missing quotation
error would be sufficient information to fix it.

Table 5. Summary of participants, with expertise in HTML, CSS, and most familiar programming language on a scale of 0 to 3,

and skill-based, rule-based, knowledge-based, and total error counts.

P Gender Age Current Profession HTML CSS Prog S R K Total Unsolved

1 Female 19 Student (Digital Media) 38 3 0 41 2.4%

2 Female 20 Student (Digital Media) 21 6 2 29 34.5%
3 Male 20 Student (Computer Science) 47 8 3 58 1.7%

4 Male 20 Student (Business) 39 23 0 62 16.1%

5 Male 19 Student (Information Systems) 21 6 7 34 17.7%

6 Male 25 Student (Information Science) 20 16 8 44 38.6%

7 Female 22 Student (Digital Media) 36 3 1 40 2.5%

8 Male 23 Visual Effects Art 21 0 0 21 4.8%

9 Male 23 Student (Digital Media) 56 6 1 63 6.4%

10 Male 20 Student (CS) 16 8 1 25 4.0%
11 Female 29 Student (Environmental Science) 39 6 12 57 7.0%

12 Male 20 Student (Information Systems) 23 3 0 26 3.9%

13 Male 36 Law 18 3 11 32 28.1%

14 Male 22 Student (Information Technology) 9 2 4 15 26.7%

15 Male 41 Web Design 37 8 10 55 21.8%

16 Female 19 Student (Art) 26 13 5 44 27.3%

17 Female 47 Web Design 26 3 5 34 17.7%

18 Male 21 Student (Business) 22 2 1 25 8.0%
19 Female 24 Student (Education) 14 8 5 27 33.3%

20 Male 18 Student (Business) 32 7 20 59 30.5%

78

4.1.2 Rule-Based Error
Participant 5, a 19-year-old college student, is progressing with
Task 5, which requires him to create multiple div elements in
HTML and style them using CSS. To this end, he assigns the
elements classes in HTML and selects those classes in CSS. These
are skills that he successfully used earlier to complete Task 4.

He sets the class of one div to “2” and assigns the class a blue
background color. To his surprise, the div does not change color.
Though he does not realize it, the cause of this error is that class
names cannot begin with a number.

This episode is illustrative of rule-based errors. Participant 5 is
familiar with the general rule for how to set classes in HTML, and
how to select them in CSS. But he comes up against an unfamiliar
exception in how classes can be named. Although he is able to
overcome this, he expends significant time and effort to do so, and
in the end may still not fully comprehend the source of the error.
In this case, the simple elaboration of a known rule is likely
sufficient for resolving the error.

4.1.3 Knowledge-Based Error
In Task 3, Participant 20 is asked to style the text in each cell of
the provided table by aligning it to the right. He begins by
opening up a website he used in an earlier task to reference the
syntax of common tags. On the website is a section called
“Alignment tags,” which includes the following deprecated code
for aligning text to the right.

<P	 ALIGN=Right>your	 text	

He copies the code, pastes it into his own, and modifies it to
create the following:

<table><ALIGN=Right>	
	 	 	 	 <tr><td>Pro:	 Low	 Unemployment</td></tr>	

Observing that this code doesn’t have the desired effect, he tinkers
with the placement of the align code, moving it inside the td
element without any success. He moves it again, this time
between tr and td tags. It still doesn’t work.

He searches the web with a query for “align right table”. The top
result is a question and answer site, where he spots code using the
align attribute:

<tr><td>..</td><td	 align='right'>10.00</td></tr>	

He copies and pastes part of this HTML snippet into the CSS
pane, resulting in the following code.

table	 {	
	 	 	 	 align='right'	
}	

The style is still not taking effect, so Participant 21 spends the
next minute carefully inspecting his code. He adds dummy text
between the tr and td tags, confirming that it has some effect on
the live preview before quickly deleting it. Next, he conducts
another query for “css align right table” and scans three different
pages. He comments to the researcher, as he points to the code he
had added to the CSS pane, “It said to put this in here. Almost
exactly like that.” He continues with several more web searches,

using general queries like “using css” and “apply css attribute”.
After much tinkering with the code, Participant 21 gives up six
minutes after he started moves on to the next part of the task.

Participant 21’s struggles with Task 3 involved the fundamentals
of HTML and CSS, and are representative of errors at the
knowledge-based level. He has significant knowledge gaps in the
structure of an HTML tag, demonstrates persistent confusion
between HTML and CSS code, and engages in lengthy web
searches. At this level, resolution requires substantial learning.

4.2 Classifying the Errors
To produce a robust classification of errors, we examined not only
the errors themselves, but also the context and response to the
errors in a process similar to axial coding from grounded
theory [17] and informed by our understanding of errors as driven
by skills, rules, or knowledge deficits. This yielded a unique set of
codes at each level of the skills-rules-knowledge framework.
Through our analysis, we found that 70.9 percent of errors
occurred at the skill-based, 16.9 percent at the rule-based, and
12.1 percent at the knowledge-based levels. A scant 4.3 percent of
skill-based errors were unresolved, while 39.6 percent of rule-
based and 52.1 percent of knowledge-based remained so. Tables 7
to 9 provide a description and example for each type, and a count
of total and unresolved occurrences.

At the skill-based level, errors are caused by unintentional actions,
such as a mental or physical slip, during highly routine activities.
We found six major error types here, including typographical
errors, forgetting to close paired constructs, missing a delimiter,
accidentally mixing HTML and CSS syntax due to mode
switches, confusing semantically similar constructs such as titles
and headers, and placing code in a location other than intended.
These errors do not always occur at the skill-based level, and so
we had to rely on additional cues, such as their reaction to
spotting an error and their attempts at fixing it, to classify them.
Far and away, typographical errors were the most common,
although nearly all of them were resolved. This was generally true
for all skill-based errors.

At the rule-based level, errors also occur during relatively routine
activities, but are caused by the intentional and consistent, but
faulty, application of familiar rules. We found rule-based errors to
be most diverse in their types. This makes sense given that they
occur when encountering edge cases, where more general and
previously reliable rules start to break down. The most common
rule-based errors involved using the wrong name for a property or
attribute, using an obsolete construct, and dealing with lists.
Especially at this level, the error types are not meant to be
comprehensive, but simply representative of the errors we
observed in our study. We expect that countless others can be
added to this list, and that this list is likely to change as standards
evolve.

At the knowledge-based level, breakdowns are caused by a severe
lack or misapprehension of relevant knowledge while facing an
unfamiliar problem. Knowledge-based errors make up only a few
types (Table 9), but they are central models governing HTML and
CSS, broadly integrating many topics. HTML fundamentals and
CSS fundamentals were most common, perhaps reflecting the
expertise of participants and the nature of the tasks.

79

Table 6. Skill-Based Error Types.

Error Type Description Examples Total Unresolved
Typographical
Errors

Physical slips in the typing process, as
with tags, properties, and values

</blcokquote>	
bacground-‐color	
width:	 100ps;	

495 7

Unclosed Pairs
Forgetting to close paired constructs or
characters, such as tags, quotes,or
braces

<h1>Note	
	
a	 {	 color:	 red;	

27 15

Missing Delimiter
Forgetting other symbols that delimit
data, such as semicolons in CSS rules
and the hash symbol in hex values

h1	 {	
	 	 	 	 font-‐size:	 20px	
	 	 	 	 color:	 0000FF;	
}	

6 1

Mixed Mode Accidentally applying HTML syntax to
CSS, or vice versa	

div	 {	 color=blue;	 }	
<div	 color=red;>	 12 1

Confused Similar
Constructs

Mixing up semantically similar
constructs

title	 &	 h1	
color	 &	 background-‐color	
class	 &	 ID.	

17 0

Misplaced Code Accidentally pasting code or typing in
the wrong location

	 4 0

	

561 24

Table 7. Rule-Based Error Types.

Error Type Description Examples	 Total Unresolved

Obsolete
Construct

Using elements, attributes, and
properties that once were valid but are
no longer support

<center></center>	
	 12 9

Invalid Construct Using elements, attributes, or properties
that do not exist and never have

<sidebar></sidebar>	 12 3

Valid But
Unsuitable
Construct

Using a familiar but cumbersome
element, instead of a simpler and more
suitable one

<p>1.	 First	 item</p>	
<p>2.	 Second	 item</p>	 3 1

Misidentified
Construct

Using the wrong name to reference a
construct

font-‐color	 instead	 of	 color	
align	 instead	 of	 text-‐align	 24 6

Hyperlink
Concepts

Confusing the hyperlink content and
destination

	
http://google.com	 7 0

Resource Paths Errors in constructing the path to a
resource such as an image or web page

http:icer-‐conference.org	
absolute	 vs.	 relative	 paths	 1 0

Lists and List
Items

Giving a list element a child other than a
list item, which is required

	
	 	 	 	 <p>Item	 one</p>	
	

13 11

Ordered List
Numbering

Manually numbering ordered list items,
which are automatically numbered

	
	 	 	 	 1.	 Item	 one	
	 	 	 	 2.	 Item	 two	
	

9 3

Empty Element
Syntax

Errors with empty elements, which are
solitary instead of paired like typical
elements

	
</	 br>	 instead	 of	
	 11 9

Style Element
Placement

Using style elements outside of head
without the scoped attribute

<body>	
	 	 	 	 <style>	
	 	 	 	 	 	 	 	 h1	 {font-‐color:	 red;}	
	 	 	 	 </style>	

3 2

Inline Style
Syntax

Syntax errors while writing CSS code
inline with HTML <h1	 color:	 red;>Header</h1>	 6 1

Color Hex Values Misformatting hexadecimal values,
which require a hash and 3 or 6 digits color:	 0000FF;	 2 0

Missing Units Forgetting required units on CSS values margin:	 40;	 3 2
Naming
Identifiers

Starting a class or ID name with a
numeral or other invalid character <div	 class="1"></div>	 3 1

Mistargeted Style Applying style to wrong element due to
a logic error

table	 {	
	 	 	 	 text-‐align:	 center;	
}	

4 0

80

Overriding Rules Inadvertently overriding rules due to the
CSS cascade

a:hover	 {	
	 	 	 	 color:	 red;	
}	
	
a:link	 {	
	 	 	 	 color:	 blue;	
}	

1 0

Invisible Elements
Missing content, height, border, or
background, causing an element to not
be visible as expected

<div	 style="width:	
500px;"></div>	 8 2

Centering Block
Elements

Inability to center block elements,
which requires setting a width, and left
and right margins to auto

<div	 align="center">Not</div>	
	
div	 {	
	 	 	 	 text-‐align:	 center;	
}	

4 1

Collapsing
Margins

Undesired collapsing of vertical margins
in adjacent or nested elements

<div	 style="margin:	 10px;">	
</div>	
<div	 style="margin:	 20px;">	
</div>	

3 2

Non-unique IDs Using an ID multiple times in a
document

<div	 id="section1">	
	 	 	 	 <h1	 id="section1">1</h1>	
</div>	

1 0

Comment Syntax Syntax errors for comments in HTML
and CSS

//	 HTML	 comment	
/	 CSS	 comment	 4 0

 	 134 53

Table 8. Knowledge-Based Error Types.

Error Type Description Examples Total Unresolved

HTML
Foundations

The basic syntax and semantics of
HTML elements, including tags,
attributes, and values

<align="right">Sidebar</align>	 39 17

CSS Foundations
The basic syntax and semantics of CSS
rule sets, including basic selectors,
properties, and values

div:	 color:	 red;	 26 12

CSS Selector Advanced and compound CSS selectors .div	 >	 #element	 23 15

Box Model Setting the dimensions of elements
using properties of the box model

width,	 height,	 padding,	 border,	
margin	 2 1

Positioning Model Setting the position of an element within
the document’s flow

position,	 float,	 top,	 right,	
bottom,	 left,	 display	 6 5

 	 96 50

5. DISCUSSION
In the following sections, we discuss the implications of this
taxonomy of errors in terms of learning basic web development
and designing tools for beginners.

5.1 Role of Errors in Learning
The taxonomy presented above helps to map the landscape of
errors that people commonly make in HTML and CSS. Although
errors are undesirable in many situations, they can play an integral
role in teaching and learning. For us, the goal is not to identify
errors in order to eliminate them; rather, it is to understand when
and why they occur in order to provide learners with the means to
detect, understand, and resolve them productively.

At the knowledge-based level, we have identified several topics
fundamental to web development. These topics can be roughly
ordered by the sophistication of understanding required, with
certain topics building on others. The topics suggest different
conceptual plateaus on which people are operating. Prior to
HTML and CSS foundations, people may have acquired meaning
about bits of unconnected code. Upon learning these foundations,
they are able to construct the building blocks of web pages,

HTML elements and CSS rule sets. Finally, through CSS
selectors, they learn how these bits of CSS and HTML can be
related to each other in more sophisticated ways, and, through the
box and positioning models, they are able to see how all of the
parts relate to the whole document.

At the rule-based level, errors give particular insight into the
misconceptions people hold about HTML and CSS. At this level,
people are applying rules with intention that, while producing
errors, make sense according to their current state of knowledge.
In many cases, these are rules that have served effectively in the
past, but are not workable in exceptional circumstances or
changing contexts. Table 7 suggests a number of common
misconceptions that students and instructors alike should be
vigilant about when introducing topics.

Finally, while skill-based errors were caused by small slips that
were usually corrected, they sometimes cascaded into other errors
and had the potential to cause surprisingly great difficulties. Skill-
based errors, though seemingly minor, often resisted detection and
resolution because participants tended to overlook them and
misdirect their debugging efforts primarily to less familiar code.

81

5.2 Implications for Design
Our study gives us insight into how systems can be designed to
provide better support for in detecting and fixing web
development errors. At all levels, feedback provided by the web
editor’s live preview panel was instrumental in detecting and
resolving errors. As participants typed their code, they were able
to immediately test it as the page rendered in real time. However,
as the only mode of feedback, the live preview could also be
detrimental. Browsers are tolerant of errors, and often render
HTML and CSS code that is riddled with bugs. When a beginner
writes code that has many errors but still renders as desired, they
receive positive feedback in the form of the properly formatted
web page. These errors are latent, remain unresolved, and
reinforce faulty understandings that can become difficult to
overcome.

HTML and CSS validators can detect syntax errors in the code
and help counter false reinforcement, whether as an integrated
feature of an editor or as a step in beginners’ workflow. Beyond
syntax errors, HTML and CSS linters apply heuristics that identify
common semantic errors that a validator might not catch. For
instance, Ko and Wobbrock [8] describe the uniqueness heuristic,
which states that an identifier, such as an HTML ID or class, that
is used only once is likely unintended. Our taxonomy suggests a
number of additional warning signs for semantic errors,
particularly at the rule-based level. A div that is being given visual
styles but that is not visible due to being dimensionless is one
such example.

Finally, errors at each level are best addressed by different
approaches, due to differences in their intentionality and the
extent of faulty knowledge at their root. Skill-based errors are
unintentional, requiring only an indication of their existence and
location. Rule-based errors require relatively simple explanations
of the errors. At the knowledge-based level, a flood of error
messages may be counter-productive, and users may be best
served by being directed to substantive learning resources. In
short, the skills-rules-knowledge framework suggests how error
feedback might be triaged to be most effective.

5.3 Limitations
In this study, we observed the coding behavior of participants
directly. This gave us a richer view of coding activity than would
have been possible through code inspection or interviews. Coding
was accompanied with verbal articulations, facial expressions,
gaze changes, web searches, and even different postures, all of
which helped us when interpreting and classifying their errors.
However, there were significant tradeoffs with this approach. Our
analysis was time consuming, which limited the number of
participants and the diversity of the coding activities we could
observe. In future work, we hope to complement this study by
analyzing a broader corpus of data.

6. CONCLUSION
In this paper, we have reported on the errors people make while
writing HTML and CSS code. We have found the skills-rules-
knowledge framework to be a valuable analytic tool, constructed a
taxonomy of errors, and examined the source of errors. We
continue to iterate on the openHTML browser based on these
findings.

7. REFERENCES
[1] Anderson, J. & Jeffries, R. (1985). Novice LISP errors:

Undetected losses of information from working memory.
Human-Computer Interaction, 1(2), 107–131.

[2] Blackwell, A. (2002). First steps in programming: A
rationale for attention investment models. HCC, 2–10.

[3] Brandt, J., Guo, P., Lewenstein, J., Dontcheva, M., &
Klemmer, S. (2009). Two studies of opportunistic
programming: Interleaving web foraging, learning, and
writing code. CHI. 1589-1598.

[4] Bruckman, A. & Edwards, E. (1999). Should we leverage
natural-language knowledge?: An analysis of user errors in a
natural-language-stye programming language. CHI, 207-214.

[5] Désilets, A., Paquet, S., & Vinson, N. (2005). Are wikis
usable? WikiSym, 3-15.

[6] Dorn, B. & Guzdial, M. (2010). Learning on the job:
Characterizing the programming knowledge and learning
strategies of web designers. CHI, 703-712.

[7] Ko, A. & Myers, B. (2005). A framework and methodology
for studying the causes of software errors in programming
systems. Journal of Visual Languages and Computing, 16,
41–84.

[8] Ko, A. & Wobbrock, J. (2010). Cleanroom: Edit-time error
detection with the uniqueness heuristic (pp. 7–14). VL/HCC,
7-14.

[9] Miller, C., Perkovic, L., & Settle, A. (2010). File references,
trees, and computational thinking. ITiCSE, 132-136.

[10] Panko, R. (1998). What we know about spreadsheet errors.
Journal of End User Computing, 10(2), 15–21.

[11] Park, T., Saxena, A., Jagannath, S., Wiedenbeck, S., & Forte,
A. (2013). openHTML: Designing a transitional web editor
for novices. CHI Extended Abstracts.

[12] Park, T. & Wiedenbeck, S. (2011). Learning web
development: Challenges at an earlier stage of computing
education. ICER, 125-132.

[13] Rasmussen, J. (1983). Skills, rules, and knowledge; Signals,
signs, and symbols, and other distinctions in human
performance models. IEEE Transactions on Systems, Man,
and Cybernetics, 13(3), 257–266.

[14] Reason, J. (1990). Human Error. Cambridge University
Press.

[15] Rosson, M., Ballin, J., & Nash, H. (2004). Everyday
programming: Challenges and opportunities for informal web
development. VL/HCC, 123-130.

[16] Spohrer, J. & Soloway, E. (1986). Alternatives to construct-
based programming misconceptions. CHI, 183-191.

[17] Strauss, A. and Corbin, J. (1998). Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications.

[18] Youngs, E. (1974). Human errors in programming.
International Journal of Man-Machine Studies, 6, 361–376.

82

Andrea
Typewritten Text
This work is supported by the NSF, CNS #1152094.

Andrea
Typewritten Text

Andrea
Typewritten Text

Andrea
Typewritten Text

