
Reading Hierarchies in Code:
Assessment of a Basic Computational Skill

Thomas H. Park, Meen Chul Kim, Sukrit Chhabra, Brian Lee, Andrea Forte
College of Computing and Informatics

Drexel University
Philadelphia, PA, USA

{park, meenchul.kim, sukrit.chhabra, bl389, aforte}@drexel.edu

ABSTRACT
One of the skills that comprise computational thinking is the
ability to read code and reason about the hierarchical relationships
between different blocks, expressions, elements, or other types of
nodes, depending on the language. In this study, we present three
new instruments for assessing different aspects of reading
hierarchies in code, including vocabulary, reasoning, and fluency.
One of these instruments is Nester, an interactive tool we have
designed to elicit mental models about the hierarchical structure
of code in computing languages ranging from HTML, CSS, and
LaTeX to JavaScript and Lisp. We describe a lab study in which
we administered these instruments to 24 participants with varying
degrees of web development experience. We report findings from
this study, including participants’ ability to define, reason about,
and manipulate hierarchies in code, and the errors and
misconceptions that relate to them. Finally, we discuss avenues
for future work.

CCS Concepts
Social and professional topics ➝	Computational thinking •
Social and professional topics ➝	Assessment

Keywords
computational thinking; web development; assessment; program
comprehension.

1. INTRODUCTION
Computation is increasingly recognized as a fundamental literacy
alongside reading, writing, and arithmetic [2]. The term
computational thinking was coined by Wing to describe “solving
problems, designing systems, and understanding human behavior,
by drawing on the concepts fundamental to computer
science” [30]. In their work with Scratch, Brennan and Resnick
expand on this notion by proposing a framework of concepts (e.g.,
iteration, parallelism), practices (e.g., debugging, remixing), and
perspectives (e.g., expressing, connecting) [1]. As their
framework demonstrates, computational thinking can be thought
of as a rich, multi-layered set of knowledge and skills.

Web development is one domain that reflects this rich and multi-
layered quality, given the broad set of technologies and practices
that it calls upon, as well as its role as the first major exposure to
creative computation for many people [3, 22]. Multiple facets of
web development have been examined through the lens of
computational thinking. For example, Miller et al. [14] analyze
the errors students make when using a tree representation of a
filesystem to construct relative and absolute paths. Dorn and
Guzdial [4] characterize the knowledge gained by web developers
about fundamental programming concepts like assignment, scope,
and recursion through their experience with languages like
JavaScript and PHP, finding that participants often recognize but
do not fully understand these concepts.

Previously we proposed that basic markup and style-sheet
languages like HTML and CSS can also engage aspects of
computational thinking, like notation, nesting, and
parameters [15]. Our subsequent work has explored the common
errors web developers make when writing HTML and CSS [17],
identifying the deep nesting of code as a particularly troublesome
area for beginners [16].

In this paper, we build on that work by focusing our attention on
the knowledge and skills associated with reading deeply nested
hierarchies in code. Navigating hierarchies in code involves
multiple perceptual, cognitive, and motor processes, from parsing
long strings of text by identifying delimiters and other features of
the code, forming mental models that reflect the code’s
hierarchical structure, reasoning about relationships between
different sections of the code based on this model, and editing the
code to reflect a newly desired state.

Like many concepts found within computational thinking,
hierarchies provide a way of managing complexity. By being able
to move adroitly between different levels of nesting, one can view
the same code at different levels of abstraction, focusing attention
on a particular level or chunk of code while understanding its
function in relation to the rest of the program. Moreover, this is a
basic concept that can be applied to a wide range of computing
languages. However, these abilities presumably must be learned
over time and developed through practice.

To explore knowledge and skills related to navigating hierarchies
in code, we pose the following research questions:

1. How familiar are web developers with the vocabulary of
hierarchies?

2. How well do web developers apply rules and reason about
navigating hierarchies?

3. How can we measure skills associated with fluently
navigating hierarchies, and how do they transfer from
familiar to unfamiliar computing languages?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ITiCSE '16, July 09 - 13, 2016, Arequipa, Peru
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4231-5/16/07�$15.00
DOI: http://dx.doi.org/10.1145/2899415.2899435

302

2. RELATED WORK
The program comprehension literature describes several models
of how programmers construct an understanding of code [23]. In
early work, two fundamental approaches were proposed. The top-
down model suggested that programmers start with the problem
domain and program goals, relating them to elements of the
code [25]. In the bottom-up model, programmers begin with
elements of the code and map them to the program goals [19].
Since then, other models depict a more nuanced picture where
programmers switch opportunistically between these
approaches [11], depending on their present state of knowledge
about the program and the programming task at hand [13].

During program comprehension, code can be read along multiple
dimensions, with different features of the program becoming more
relevant and providing alternate forms of information [7]. These
dimensions facilitate different strategies that professional
programmers use to understand code, like tracing the data flow
and the control flow [10, 21]. Another dimension is spatial,
referring to the code’s order in the source, in contrast to its
execution order [8]. In the present study, we consider a structural
view in which programmers examine the hierarchical structure
that is created by the nesting of code blocks in a program. This
structural view is tied to both the logic underpinning the code’s
organization, as well as its spatial arrangement when formatted
with indentation.

In expert program comprehension, researchers have found
evidence for a reliance on beacons, which Wiedenbeck defines as
“lines of code which serve as typical indicators of a particular
structure or operation” [29]. Green has likewise found support for
the indentation of nested code enabled by structured programming
for acting as “redundant perceptual encoding… [that] provides a
secondary clue to their logical structure” in improving program
comprehension [6]. These empirical findings suggest that just as
individual lines can serve as landmarks, reading hierarchies can
help reveal the more general terrain of code during program
comprehension.

Finally, several studies point to the design and practices of a
language, such as its nesting syntax and use of whitespace, as
having an effect on program comprehension. Like paired tags
used in HTML and XML, the redundant labelling of “begin” and
“end” statements used to mark a nested block of code in ALGOL
was found to aid program comprehension among novices [24].
Stefik and Seibert conducted several studies that found the syntax
of different program languages like Python, Ruby, and Java to
have a significant effect on their understandability and ease of
use [27]. If significant differences exist among imperative
programming languages, then for drastically different languages
like LaTeX, CSS, and Lisp, there is the question of the degree to
which such differences exist, and how the basic skill of reading
hierarchies in code may transfer across languages.

Despite distinct differences from reading code, the extensive
research on reading comprehension as it relates to prose is also
instructive [19]. Reading fluency—decoding and comprehending
text accurately and with the appropriate rate and prosody—calls
on a cascade of sub-processes and knowledge such as letter sound
fluency and vocabulary [9]. Studies have found that lower-level
skills like word decoding are a critical factor in reading ability [5].
We similarly consider reading hierarchies in code as a basic
computational skill that can support higher-level programming
activities.

3. METHODS
To address our research questions, we developed three
instruments for measuring knowledge and skills about hierarchies
in code. We then conducted a lab study in which we invited
participants into the lab and had them complete tasks based on
these instruments. We triangulate the data collected from these
instruments for our analysis.

3.1 Data Collection
For our study, we sought participants who had prior experience in
web development, ranging from beginner to expert. We posted
on-campus flyers and announcements on mailing lists, and offered
$25 for participation in the approximately hour-long session.

The participants were invited into a lab, where we provided them
with a computer to be used for the study. After giving informed
consent, participants were directed to complete a computer-based
pre-questionnaire that collected information about their area of
study and self-reported expertise with a variety of computing
languages. Following this, they completed tasks based on the
three instruments described in the next section. The study
concluded with a post-questionnaire that asked participants to rate
their perceived difficulty with the tasks, and provide demographic
information such as age and gender. We delayed collection of
demographic information until after the tasks in order to minimize
the effect of stereotype threat [26].

24 participants volunteered to participate, 11 females and 13
males. All participants were either undergraduate or graduate
students, with an average age of 22 years. Their areas of study
emphasized design or technology, including majors in digital
media, software engineering, computer science, and information
systems. The sole exception was a chemical engineering student.

None of the participants practiced web development
professionally, but all had some level of prior experience. Among
the computing languages surveyed, participants were most
familiar with HTML, followed by CSS and JavaScript. All 24
participants reported experience with HTML, with a mean of 2.1
on a scale 0 (no experience) to 4 (expert), 22 participants with
CSS (µ = 1.7), and 19 with JavaScript (µ = 1.3).

3.2 Instruments
In this section, we present three instruments we have developed to
assess knowledge and skills related to the concept of hierarchies
in code. These include hierarchical vocabulary, hierarchical
reasoning, and hierarchical fluency.

3.2.1 Hierarchical Vocabulary
The first instrument assesses basic understanding of vocabulary
associated with hierarchies. Seven terms are presented:

• Parent
• Child
• Ancestor
• Descendant
• Sibling
• Root
• Leaf

For each term, participants are first asked to rate whether they
know the definition in the context of hierarchies, recognize the
term but do not know the definition, or are not familiar with the
term. Next, they are prompted to define each of the terms in their
own words.

303

3.2.2 Hierarchical Reasoning
In the second instrument, participants are presented with a code
sample (Figure 1) and 14 items asking them to identify various
nodes based on combinations of the aforementioned terms. For
example, one item asks participants to identify the parent of the
node present in line 2. This type of reasoning is frequently
employed in activities like debugging HTML code, or navigating
and selecting DOM nodes using CSS or JavaScript. The
instrument provides definitions for the terms in case participants
are not already familiar with them, and asks them to identify
nodes by providing their element names and line numbers (e.g.,
html in line 1).

The complete list of items is presented in Table 1. The first seven
items apply the hierarchical terms individually, while the rest
relate to more complex scenarios involving what we predict to be
common misconceptions or pitfalls when reasoning about
hierarchies. For example, item 10 assesses whether participants
recognize nested nodes when formatted inline; Item 11 assesses
whether participants mistake “cousins” for “siblings” when the
cousins have no siblings of their own. The code sample is
designed to support all of these items.

This instrument takes an approach that is similar to code tracing
problems [12] in that participants must reason about a static
representation of code. However, rather than predicting the
program execution and output, they must determine hierarchical
relationships between different parts of code.

Figure 1. The HTML code sample used in the hierarchical
reasoning instrument.

Table 1. Items used in the hierarchical reasoning instrument.

Item Principle Instructions
1 Parent List the parent of <head> (line 2)
2 Child List all children of <header> (line 6)
3 Ancestor List all ancestors of <h1> (line 7)
4 Descendant List all descendants of <table> (line 12)
5 Sibling List all siblings of <h1> (line 7)
6 Root List the root element

7 Leaf List all leaf elements contained in <table>
(line 12)

8 Proximity List the parent element of <button> (line
43)

9 Depth List all leaf elements contained in
(line 21)

10 Inline List the parent element of (line 49)
11 Cousins List all sibling elements of <td> (line 17)

12 Filter List all <input> elements that are
descendants of any <div>

13 Compound List all descendants of <body> (line 5) that
are also ancestors of <td> (line 17)

14 Common
Ancestor

List the closest ancestor that <input> (line
38) and <input> (line 41) share in common

3.2.3 Hierarchical Fluency
The third instrument assesses hierarchical rules as applied within
an interactive coding environment. We developed a tool called
Nester (Figure 2) that presents participants with unformatted
snippets of code in various computing languages, with each line
of code represented as a movable block. Participants are asked to
indent the lines of code to reflect the nesting rules of the language,
whether or not whitespace is significant in the given language.
The purpose of Nester is to elicit observable representations of
mental models that participants hold about the code.

Figure 2. Nester, the interactive tool developed as the
hierarchical fluency instrument, loaded with the HTML task.

304

In our previous work with HTML and CSS [17], we applied the
skills-rules-knowledge framework [20] to differentiate rule-based
errors that are rooted in misconceptions from skill-based errors
that arise even when no misconceptions are held. While the
previous two instruments are aimed at uncovering misconceptions
or knowledge gaps, this instrument is designed to present more
complex and interactive tasks that place a greater load on
participants’ working memory [28]. In short, it is designed to
expose the fluency with which participants handle hierarchies in
code.

Compared to a traditional code editor, Nester constrains the
possible operations on code. Only the indentation of individual
lines of code, not their contents, can be edited. Some
programming environments offer auto-indent features that would
render Nester’s tasks trivial. However, although Nester does not
provide an authentic experience that programmers would
encounter in practice, like Parson’s programming puzzles [18]
they can be used to target assessment at a specific aspect of code
comprehension.

The common operations for selecting, indenting, and unindenting
lines of code are supported via key combinations and the
graphical user interface. For example, the up and down arrow
keys can be used to select different lines, and a selected line can
be indented by using the tab or right arrow keys. Lines can also be
selected by mouse by clicking specific blocks, and indent and
unindent buttons are displayed prominently at the top of Nester.
Multiple lines can also be added to a selection by holding down
the shift or control modifier keys while selecting a new line, or by
dragging a box with the mouse cursor (i.e., lassoing) around
multiple blocks. Before the tasks, participants were given a
freeform orientation task to familiarize themselves with the
operations of Nester.

Nester is designed to support any number of languages and code
samples, but for this study, we used Nester to present a single
code sample for each of seven languages: HTML, XML, JSON,
LaTeX, SCSS, JavaScript, and Lisp. These languages were
selected to represent a broad range of syntaxes for delimiting
nested blocks of code. For example, HTML, XML, and LaTeX as
markup languages rely on start and end tags, JSON, JavaScript,
and SCSS (an extension of CSS) on braces, and Lisp on
parentheses. Additionally, we expected the languages to vary in
terms of their familiarity among participants. This was confirmed
in the pre-questionnaire where all 24 participants had prior
exposure to HTML, but only 4 had exposure to Lisp.

The code samples used in the study were comprised of a root node
and three sub-trees, each of which was designed to be isomorphic
across languages in terms of their nested structure. This was to
control for variables like lines of code and complexity in the code
samples. For example, if an element in the HTML sample had two
child elements, then the equivalent node in JavaScript had two
statements in a nested block of code. The order of the sub-trees
within a code sample was randomized for each task, and the order
of the languages was randomized for each participant.

At the start of each task, instructions and an example are
presented within Nester for how code should be formatted in case
the participant was not familiar with the language. The
instructions can also be invoked later on by clicking a button in
the toolbar. After formatting the code, the participant was directed
to click the Submit button, where Nester reports whether the task
was solved correctly. If errors were present in the code, the
opportunity is given to fix the errors and resubmit.

3.3 Data Analysis
For the hierarchical vocabulary instrument, self-reported
familiarity with each term was converted to 0 (not familiar), 1
(recognize but do not know the definition), or 2 (can define). The
definitions that participants provided were also graded as 0
(incorrect), 1 (partially correct), or 2 (correct). Summing these
values resulted in a scale from 0 to 14 for each of the two parts.

For the hierarchical reasoning instrument, responses were rated
similarly: 0 (incorrect), 1 (partially correct), and 2 (correct). This
resulted in a scale from 0 to 28. Mistakes were examined
qualitatively in further detail.

For the hierarchical fluency instrument, data logged by Nester for
analysis included the total time spent on each task, the number of
attempts per task, as well as the number and locations of errors
per attempt.

4. FINDINGS
4.1.1 Hierarchical Vocabulary
In the hierarchical vocabulary instrument, participants’ self-rated
familiarity with the terms ranged the full scale from 0 to 14., with
a mean of 10.7 (σ = 3.8). Five of the 24 participants had a score of
7 or less, indicating a low level of familiarity, with one participant
reporting no familiarity at all. A breakdown of the items is
provided in Figure 3, revealing that “leaf”, “descendant”,
“ancestor”, and “root” were the least familiar.

Figure 3. Count of participants’ familiarity with terms.

Figure 4. Count of participants’ correctness of definitions.

305

In defining the terms in the participants’ own words, scores again
ranged from 0 to 14, with a mean of 8.7 (σ = 4.1). Seven
participants had a score of 7 or less, with two participants not
attempting any definitions. Correctness of each term’s definition
(Figure 4) was largely in line with the respective self-rating, with
a correlation of r = 0.81, p < 0.001, though participants tended to
overestimate their knowledge slightly.

Beyond the implicit metaphor of trees, a number of participants
made references to families, object-oriented programming, and
file systems in their definitions. Several had fuzzy notions of
“leaf”, confusing the term with nodes in general. Another
common misconception was that “ancestors” excluded “parent”
and “descendants” excluded “child” nodes.

4.1.2 Hierarchical Reasoning
For the hierarchical reasoning instrument, scores ranged from 2 to
28, with a mean of 23.1 (σ = 5.9). Performance on the term-
centered items in the first half of the reasoning instrument (Table
1) was only moderately correlated with the equivalent items on
the vocabulary instrument: r = 0.72, p < 0.001. However, this
performance tended to be higher, suggesting participants were
more comfortable applying the terms concretely in the context of
code than they were expressing more abstract definitions.

Figure 5. Count of participants’ correctness in
hierarchical reasoning instrument.

The second half of the instrument revolved around potential
pitfalls or misconceptions, and participants did perform more
poorly on several items including “depth”, “cousins”, and
“inline”. For “depth”, a common error was to overlook more
shallow leaf nodes when identifying leaf nodes deep within a
hierarchy. For “cousins”, a cousin node was mistaken for a sibling
on several occasions. For “inline”, three elements were nested
within one another on a single line of code; the correct element,
which was located in the middle of the line, was overlooked in
favor of the element that was located most prominently at the start
of the line.

4.1.3 Hierarchical Fluency
Hierarchical fluency was measured through seven tasks in Nester.
Participants varied considerably in time on task, ranging from 6.2
to 64.3 minutes (µ = 16.7, σ = 11.9). The cumulative attempts and
errors averaged 12.8 (σ = 4.5) and 4.0 (σ = 10.6) respectively.
Strong correlations were found between performance on the
reasoning instrument and time (r = -0.84, p < 0.001) and attempts
(r = -0.70, p < 0.001), but not errors (r = -0.45, p < 0.01).

The two programming languages Lisp and JavaScript had the
greatest variability for time on task, with Lisp taking longest
(Figure 6). Attempts (Figure 7) and errors (Figure 8) were highly
skewed, with many tasks requiring just one attempt. No
correlation was found between the participants’ reported expertise
with each language and performance on the corresponding task.

Figure 6. Time on each task.

Figure 7. Number of attempts on each task.

Figure 8. Cumulative number of errors on each task.

306

5. DISCUSSION
Overall, participants were generally found to be familiar with the
vocabulary of hierarchies. However, they were more proficient in
reasoning about these terms within the context of code than
articulating formal definitions of them.

Contrary to expectations, familiarity with a language did not relate
to better performance in the hierarchical fluency instrument.
Learning effects with respect to Nester and the tasks themselves
may be a factor here. In our analysis, we discovered steep changes
in performance during the first three tasks that were administered,
independent of language given that task order was randomized,
before stabilizing for the rest of the tasks. To address this, a
lengthier training session as well as greater quantity and variety in
the code samples may be required.
Based on our experiences, we identified several opportunities to
refine our instruments. For the vocabulary instrument, we plan to
add a prompt for defining the concept of “hierarchy” itself. For
the reasoning instrument, identifying nodes by element name and
line number was cumbersome; an interactive format that allows
nodes to be selected directly would improve usability. Finally,
iterations on Nester could add features like syntax highlighting,
providing a more familiar and authentic experience.

In future work, we plan to administer these in the context of
introductory computing courses, gaining insight into the impact
these courses have on student ability to read hierarchies in code.

6. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
CNS grant #1339344.

7. REFERENCES
[1] Brennan, K. and Resnick, M. 2012. New frameworks for studying

and assessing the development of computational thinking. Proc.
AERA (2012), 1–25.

[2] diSessa, A.A. 2001. Changing Minds: Computers, Learning, and
Literacy. MIT Press.

[3] Dorn, B. and Guzdial, M. 2010. Discovering computing:
Perspectives of web designers. Proc. ICER (2010), 23–29.

[4] Dorn, B. and Guzdial, M. 2010. Learning on the job: Characterizing
the programming knowledge and learning strategies of web
designers. Proc. CHI (2010), 703–712.

[5] Gough, P.B., Hoover, W.A. and Peterson, C.L. 1996. Some
observations on a simple view of reading. Reading Comprehension
Difficulties Processes and Intervention. C. Cornoldi and J.V.
Oakhill, eds. 1–13.

[6] Green, T.R.G. 1977. Conditional program statements and their
comprehensibility to professional programmers. Journal of
Occupational Psychology. 50, 2 (1977), 93–109.

[7] Green, T.R.G. 1990. Programming languages as information
structures. Psychology of Programming. J.-M. Hoc, T.R.G. Green,
R. Samurçay, and D.J. Gilmore, eds. 117–137.

[8] Grigoreanu, V.I., Brundage, J., Bahna, E., Burnett, M.M., ElRif, P.
and Snover, J. 2009. Males’ and Females’ Script Debugging
Strategies. Proc. IS-EUD (2009), 205–224.

[9] Hudson, R.F., Pullen, P.C., Lane, H.B. and Torgesen, J.K. 2009. The
complex nature of reading fluency: A multidimensional view.
Reading & Writing Quarterly. 25, (2009), 4–32.

[10] Katz, I.R. and Anderson, J.R. 1987. Debugging: An analysis of bug-
location strategies. Human-Computer Interaction. 3, 4 (1987), 351–
399.

[11] Letovsky, S. 1987. Cognitive processes in program comprehension.
 Journal of Systems and Software. 7, 4 (1987), 325–339.
[12] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J.,

Lindholm, M., McCartney, R., Moström, J.E., Sanders, K., Seppälä,
O., Simon, B. and Thomas, L. 2004. A multi-national study of
reading and tracing skills in novice programmers. ITiCSE-WGR
(2004), 119–150.

[13] Mayrhauser, A.V. and Vans, A.M. 1995. Program comprehension
during software maintenance and evolution. Computer. 28, 8 (1995),
1–12.

[14] Miller, C.S., Perkovic, L. and Settle, A. 2010. File references, trees,
and computational thinking. Proc. ITiCSE (2010), 132–136.

[15] Park, T.H. and Wiedenbeck, S. 2011. Learning web development:
Challenges at an earlier stage of computing education. Proc. ICER
(2011), 125–132.

[16] Park, T.H., Dorn, B. and Forte, A. 2015. An analysis of HTML and
CSS syntax errors in a web development course. ACM Transactions
on Computing Education. 15, 1 (Mar. 2015), 1–21.

[17] Park, T.H., Saxena, A., Jagannath, S., Wiedenbeck, S. and Forte, A.
2013. Towards a taxonomy of errors in HTML and CSS. Proc. ICER
(2013), 75–82.

[18] Parsons, D. and Haden, P. 2006. Parson's Programming Puzzles: A
fun and effective learning tool for first programming courses. Proc.
ACE (2006), 157–163.

[19] Pennington, N. 1987. Stimulus structures and mental representations
in expert comprehension of computer programs. Cognitive
Psychology. 19, 3 (1987), 295–341.

[20] Rasmussen, J. 1983. Skills, rules, and knowledge; Signals, signs, and
symbols, and other distinctions in human performance models. IEEE
Transactions on Systems, Man, and Cybernetics. 13, 3 (1983), 257–
266.

[21] Romero, P., Boulay, du, B., Cox, R., Lutz, R. and Bryant, S. 2007.
Debugging strategies and tactics in a multi-representation software
environment. International Journal of Human-Computer Studies. 65,
12 (Dec. 2007), 992–1009.

[22] Rosson, M.B., Ballin, J.F. and Nash, H. 2004. Everyday
programming: Challenges and opportunities for informal web
development. Proc. VL/HCC (2004), 123–130.

[23] Schulte, C., Clear, T., Taherkhani, A., Busjahn, T. and Paterson, J.H.
2010. An introduction to program comprehension for computer
science educators. ITiCSE-WGR (2010), 65–86.

[24] Sime, M.E., Green, T.R.G. and Guest, D.J. 1977. Scope marking in
computer conditionals: A psychological evaluation. International
Journal of Man-Machine Studies. (1977), 107–118.

[25] Soloway, E. and Ehrlich, K. 1984. Empirical studies of programming
knowledge. IEEE Transactions on Software Engineering. 10, 5
(1984), 1–15.

[26] Steele, C.M. 1997. A threat in the air: How stereotypes shape
intellectual identity and performance. American Psychologist. 52, 6
(1997), 613–629.

[27] Stefik, A. and Siebert, S. 2013. An empirical investigation into
programming language syntax. ACM Transactions on Computing
Education. 13, 4 (2013), 1–40.

[28] Sweller, J. 2003. Cognitive load during problem solving: Effects on
learning. Cognitive Science. 12, (Nov. 2003), 257–285.

[29] Wiedenbeck, S. 1986. Beacons in computer program comprehension.
International Journal of Man-Machine Studies. 25, 6 (1986), 697–
709.

[30] Wing, J.M. 2006. Computational thinking. Communications of the
ACM. 49, 3 (2006), 33–35.

307

