

Computers for Communication, Not Calculation:
Media as a Motivation and Context for Learning

Andrea Forte
Mark Guzdial

College of Computing, GVU Center
Georgia Institute of Technology
{aforte, guzdial}@cc.gatech.edu

Abstract

As the skills that constitute literacy evolve to

accommodate digital media, computer science
education finds itself in a sorry state. While students
are more in need of computational skills than ever,
computer science suffers dramatically low retention
rates and a declining percentage of women and
minorities. Studies of the problem point to the over-
emphasis in computer science classes on abstraction
over application, technical details instead of
usability, and the stereotypical view of programmers
as loners lacking creativity. In spring 2003, Georgia
Institute of Technology trialed a new course,
Introduction to Media Computation, which teaches
programming and computation in the context of
media creation and manipulation. Students
implement PhotoShop-style filters and digital video
special effects, splice sounds, and search Web pages.
The course is open only to non-computer science and
non-engineering majors at Georgia Tech, such as
liberal arts, management and architecture students.
The course is supported through the use of a Web-
based collaboration environment where students
actively share and discuss their digital creations. The
results have been dramatic. 120 students enrolled,
2/3 female, and only three students withdrew. By the
end of the semester, the combined withdrawal, failure
and D-grade rate had reached 11.5%--compared to
42.9% in the traditional introductory computer
science course. 60% of the students who took media
computation reported that they would be interested in
taking an advanced version of the course; only 6%
reported that they would otherwise be interested in
taking more computer science. Results of the trial
indicate that media computation motivates and
engages an audience that is poorly served by
traditional computer science courses.

1. Introduction

Communication plays such a fundamental role in
human lives that the tools of the literate become

nearly transparent. Our pencils and pens, newspapers
and books, signs and labels are no longer noticed
unless they are absent. In the same way, computers
are becoming transparent tools, so enmeshed in
everyday practices that many of us have already
ceased to recognize their fundamental role until some
unusual circumstance prevents us from using them.
Computers have not only been introduced to our
repertoire of communication technologies, they have
become indispensable tools, permeating and
connecting cultures at astonishing rates.

Andreas diSessa defined literacy as: “a socially
widespread patterned deployment of skills and
capabilities in a context of material support… to
achieve valued intellectual ends” [1]. If we accept
that computers are altering the context of material
support, and that communication is a valued
intellectual end, what new skills and capabilities do
individuals need to leverage the power of computers
as communication tools?

Prior to the computer, most avenues of
communication and most definitions of literacy
involved one medium: text. Kay and Goldberg
described the computer as a “metamedium,” or a
medium that is capable of supporting the creation of
all other media [2]. As computer technology makes
accessible a new range of media, the skills that
constitute literacy must likewise evolve. People can
now communicate in ways that traditional, text-based
literacy did not support. In order to define these new
literacy skills, we must acknowledge that literacy
implies not only consumption, but also creation.
Reading alone does not constitute our traditional
notion of literacy: reading and writing are
fundamental literacy skills. Resnick, Bruckman and
Martin point out that just as the expressive
possibilities of playing a piano are far richer than
playing a stereo, using a computer to construct and
design captures the generative potential of the tool in
a way that simply using it to view and listen do not
[3]. Since computers represent a variety of expressive
media, digital media creation can be numbered
among new literacy skills for the computer age.

Andrea Forte
Copyright 2004 IEEE. Published in the Proceedings of the Hawai'i International Conference on System Sciences, January 5 – 8, 2004, Big Island, Hawaii. CD-ROM.

A new course at the Georgia Institute of
Technology, Introduction to Media Computation,
combines learning about the fundamentals of digital
media with basic programming skills and computer
science concepts. Media and computation are
complementary—digital media are computationally
created and manipulated. In the media computation
course, students who are interested in working with
digital media can look “under the hood” to see how
their art, music and websites come to be. At the same
time, a creative context for programming provides
students with an interesting introductory computer
science experience. The constructionist approach to
learning asserts that people learn particularly well
when they are engaged in constructing a public
artifact that is personally meaningful [4]. Introduction
to Media Computation provides students with an
environment in which their creative efforts to
construct digital media double as programming
exercises. When the course is finished, students have
not only learned to create pictures, sounds,
animations, and Web pages, they have also learned
the fundamentals of programming and computer
science.

2. Previous Work on Media Literacy

Soloway, Guzdial and Hay begin to define
computer skills that augment traditional literacy by
pointing out that computers do a lot more than allow
us to simply manipulate words [5]. Computers make
accessible a range of media that were once difficult to
manipulate and create. In terms of education, these
new media are a treasure; not only can students write
to learn, now they can also create pictures, sounds
and interactive documents. The obstacle for educators
lies in creating environments that invite students to
take advantage of these unfamiliar media in order to
learn from them without first investing immoderate
amounts of time learning to program the computer.
If the only people who are able to take full advantage
of computers’ expressive capacity are programmers,
then many people will lose valuable educational
opportunities.

Like Papert and Kay [6], [2], diSessa goes even
further in suggesting that everyone should learn to
program: a computationally literate population will
be able to think about and do new things that are
unimaginable to us in the same way that our modern,
text-based literate culture is practically unfathomable
to pre-literate cultures [1]. DiSessa argues that the
media we create and our ability to use them to their
greatest advantage of expression is a cornerstone of
human creativity. Every medium has unique

representational qualities; it provides a new and
unique way of exploring and expressing ideas. In
order to take full advantage of the computer’s power
as a meta-medium, we must be able to craft new
kinds of media that capture the essence of what we
want to say.

3. Computer Science Education and
Media Literacy

DiSessa’s view of literacy in the computer age is
not only forward thinking, it looks nearly
unachievable to those who are familiar with the
failure of computer science departments to reach a
diverse student population. Evidence of this can be
seen in the growing amount of research on computer
science for non-majors at institutions across the
United States [7], [8], [9]. Among non-computer
science majors at Georgia Tech, introductory
computer science is an extremely unpopular required
course. While the number of students obtaining
computer science degrees has increased nationally in
recent years [10]. WFD rates (withdrawal, F, or D
grades) remain notoriously high in introductory
courses. At Georgia Tech, the overall WFD rate in
introductory computer science has averaged nearly
30% over the past three years; other universities have
reported WFD rates ranging from 25 to 50% [8],
[11]. It seems that traditional introductions to
computer science are more likely to frustrate students
than attract them to the field. This trend has
troublesome implications for other fields, too. If
students of computer science are the only group to
seek out computational literacy, new media will be
slower to develop in life sciences, the humanities,
and other disciplines.

High WFD rates are not the only problem faced by
computer science educators. Few female and
minority students choose to pursue computer science
learning. The low number of female students is
especially striking, considering the high percentage
of female college students overall. In 1999-2000,
fewer than 30% of the bachelor’s degrees awarded in
the United States in computer and information
sciences were awarded to women, yet women
received nearly 60% of all bachelor’s degrees
awarded in the same academic year [10], [12]. If
educated women are not learning to be
computationally literate, what role will they play in a
society whose forms of expression are increasingly
defined by the computationally proficient?

Clearly computer science education has a lot of
work to do before it can live up its potential in
supporting students’ efforts to achieve literacy in the

computer age. Whether or not we accept that
computational literacy is the goal, it is clear that the
traditional definition of literacy must be extended to
include proficiency with new forms of media and
media that have become more accessible with the
widespread adoption of the computer. Computer
science classrooms are as yet an underutilized
resource for the teaching and learning of media
literacy.

4. Introductory Computer Science
Courses Today

Since computer science first emerged as an
academic discipline, educators have fiercely debated
the best format for introductory courses. Despite
intense discussion and continuing attention, no single
approach has emerged as the most effective or
popular. The Association for Computing Machinery
(ACM) published updated computing curricula
guidelines in 2001 that described several types of
introductory course implementations: imperative-
first, objects-first, functional-first, breadth-first,
algorithms-first, and hardware-first. While ACM
guidelines acknowledge that certain implementations
are better suited to meet non-majors’ needs, their
recommendations generally involve sequences that
span two or three semesters, which exceeds the
amount of time that most non-majors spend on
computer science.

The increase in non-majors who are required to
take introductory computer science courses or who
wish to improve their technical skills is drawing more
attention to the strengths and weaknesses of
traditional course implementations for a diverse
student population. Some educators argue that the
widespread emphasis on programming in
introductory courses causes disinterest or undue
anxiety among non-majors or does not impart useful
skills [13], [9]. Others believe that a single course
and set of content can serve non-majors and majors
alike, but that variable levels of cognitive
engagement with the material should be required [8].
Examples of non-majors’ introductory CS courses
that require no programming can be found at the
Harvard University Extension School [13], and at
Bowling Green State University [14].

Four of the six course implementations described
in the ACM Curriculum 2001 emphasize
programming; indeed, despite heated debate, most
introductory computer science courses do require
students to engage in some kind of programming
exercises. One particularly innovative introductory
CS course uses 3D animation to make certain aspects

of object-oriented programming concrete for
beginner programmers [15]. Clearly, it is our view
that programming is an essential aspect of
understanding how digital media are created and
manipulated. The course implementation trialed at
Georgia Tech in spring 2003 is perhaps best
described as “data-first.” Students start with data that
is interesting to them—their own photographs, music,
video or text—and employ programming as a way of
leveraging computers to use and transform that data.

5. Introduction to Media Computation

Georgia Tech’s introductory course in media
computation is an attempt to address the problems in
computer science education described in section 3 as
well as introduce media literacy goals to the
computer science agenda. We believe that the first
problem, high WFD rates, is symptomatic of a failure
to communicate the value of computer science to
students. If computer science is not perceived as
interesting or useful, students fail or drop out. It has
become painfully clear that generic, one-class-fits-all
computer science fails to meet the needs of a diverse
student body. Historians, writers, architects, and
engineers (just to name a few) have diverse interests
and require different kinds of computational
proficiency to perform the tasks that are important to
them. The use of domain-specific contexts for
computer science learning is being explored by
researchers with the aim of improving students’
experience in IT courses [16], we propose using this
approach for introductory computer science. Because
media computation focuses on data that is important
to students—their own photographs, recordings, and
creations—and allows them to use computation in a
personally expressive way, we expect to better
engage non-computer science majors than traditional
introductory courses and, as a result, improve
retention rates.

A second motive for creating a class in media
computation is to better engage female students in
computer science. Like other institutions, Georgia
Tech has attracted appallingly low numbers of female
computer science students; even worse, female
enrollment has dropped by roughly a percentage
point in each of the last four fall semesters [17]. The
scarcity of females in computing nationwide has
generated a spate of research to better understand
why so few women seem to find the field appealing.
At Carnegie Mellon, a longitudinal study was
conducted from 1995 through 1999 to investigate
female computer science students’ motivations and
experiences. Researchers found that reasons for

women’s disinterest in computing include the
emphasis in computer science courses on technical
detail rather than application, the perception of
computing as an uncreative or anti-social field, and a
frequently uncongenial culture [18]. Ongoing studies
by the American Association of University Women
(AAUW) echo these results, naming “computer
culture” as a major deterrent for women in computing
[19]. Both of the studies named here also suggested
that female students are put off by feelings of
incompetence, which may be fed by code-competent
males who exaggerate their skills or by the fact that
females typically have less experience in
programming by the time they reach college. Turkle
and Papert maintain that the dearth of women in
computing is induced not only by historical prejudice
or discrimination, “but by ways of thinking that make
them reluctant to join in” and that “equal access to
even the most basic elements of computation requires
an epistemological pluralism, accepting the validity
of multiple ways of knowing and thinking” [20]. We
hope that a course in media computation will provide
a new entrance to computational literacy, an
introductory CS experience that overcomes the
above-named reasons for female disinterest in
computing.

How can media computation hope to solve all of
these deeply entrenched problems?

• By connecting computer science content to

application in a relevant domain: media
creation.
If we can introduce computational skills in a
personally meaningful and relevant context, we
believe students will be more likely to “stick
with it” and, as a result, achieve more.
Communication skills such as media creation
will resonate with many students who do not
respond to conventional introductory computer
science exercises.

• Second, by challenging students to be creative
and collaborative in homework assignments.
The perception that computer science is asocial or
uncreative has been introduced by researchers of
gender disparity in computer science achievement.
We believe that the coupling of media creation
with programming skills and the freedom to
collaborate with other students will bring about a
more social, creative classroom culture for
introductory computer science.

• Third, by providing liberal arts, architecture,
management, and other non-computer science
majors with a classroom environment in which

they can make computing their own.
The “computer culture” described in gender
research is perceived by everyone, not just women.
Men and women in other fields can benefit from a
diversified computer culture that allows them to
achieve computational proficiency in a community
that shares their goals, background, and
frustrations.

5.1. Course Description

Introduction to Media Computation was piloted at
Georgia Tech in the spring semester, 2003. The
course begins with an introduction to media
encoding. Students learn how computers can save
and display media in ways that make sense to the
human eye and ear. Discussions of psychophysics
(Why does high resolution look better than low
resolution? What do we mean by CD-quality sound?)
relate to students’ own experiences with digital
photographs, MP3s, and other electronic media.

In the second week, students begin writing simple
code in the programming language Python to modify
images. At first they simply change the amount of
red, blue or green in an image, but by the third week
they create more complex code to darken or lighten
an image, turn a color photograph black and white, or
create reflections. In order to produce these effects,
the students must understand what a matrix is (a
picture is a matrix of pixels), what a variable is (the
variable red could represent the amount of red in any
pixel), how iteration works (we alter the picture by
looping through each pixel and changing it) and how
to use conditionals (only change the pixel if it meets
certain criteria).

def negative(picture):
 for px in getPixels(picture):
 red=getRed(px)
 green=getGreen(px)
 blue=getBlue(px)
 negColor=makeColor(255-red, 255-green, 255-blue)
 setColor(px,negColor)
Fig 1: A program that produces the negative of an image.

In the following weeks, these concepts are revisited

and expanded on in the context of sound and text.
Students learn to increase and decrease pitch and
volume, to search text, to generate HTML, and to
manipulate directories and networks. Finally,
animation is explored and students use what they
learned about pictures to modify animations and
create elementary special effects.

During the final few weeks of the semester, after
they have become proficient in the computational

manipulation of media, students are introduced to
broader CS concepts: Why is Photoshop faster than
the code they write? What are interpreters and
compilers? What is object-oriented programming?
What do other programming languages look like?

Key computer science ideas like abstraction,
hierarchical decomposition, representation and
encoding of data, and iteration, are introduced more
than once in the class. Whereas a more traditional
class presents these ideas in the first few weeks with
elaboration later, the media computation class
reverses that. When students first face iteration, for
example, it appears as a set operation. Students
manipulate pixels with a statement like:

for pixel in getPixels(picture):

which looks more like a statement of what “pixel”
means than an executable statement. Later, more
sophisticated notions of the for loop are introduced.
The detailed explanation of what iteration is (for
example, in contrast with recursion and as part of
what leads to algorithmic complexity) does not
appear until the end of class. The reason for this
inversion is that we know that learning occurs
concrete-to-abstract [20], [21]. Non-CS majors
cannot be expected to have much experience with
programming ideas or even sophisticated math ideas.
We aim to give them the opportunity to work with
these ideas first in a concrete fashion, and then
explain them (with the useful abstractions) later.

Students are expected to turn in six homework
assignments over the course of the semester, all of
which involve programming and entail the creation of
their own original media. Three in-class exams assess
students’ comprehension of conceptual material and
ability to read and create code. Two take-home
exams assess programming proficiency. A
collaborative website (CoWeb) enables students to
post questions, discuss problems, and display their
work if they choose to do so.

6. Course Evaluation

6.1. Data Collection

The questions we were interested in answering

during the pilot offering of the media computation
course included:
• Do students take advantage of the creative aspects

of the course?
• How does collaboration affect student performance

and perception of the course?
• How do female students respond to the course?
• Do students find media computation relevant

and/or useful?

We gathered the following data:
• We gave initial, midterm, and final surveys to

consenting students.
• We examined the homework assignments of

consenting students.
• Interviews were conducted with female volunteers

from CS1315 at both the middle and the end of the
semester.

6.2. Who are media computation students?

Introduction to Media Computation fulfills the

computer science requirement for non-engineering,
non-CS students only. The distribution of our data
sample is represented by college major in Figure 2.

On the initial survey, which was distributed during
the first week of the semester, students were asked
whether or not they had any previous programming
experience, and, if so, how many years. Media
computation students reported very little
programming experience: only 17% of the
respondents reported any programming experience at
all and of these, none reported more than one year.
Research indicates that previous programming
experience is one of the strongest predictors of
success in computer science [22], [23], [24]. Media
computation students, then, can be seen as “at risk”
students in this field.

Liberal Arts
38%

Management
46%

Architecture
13%

Sciences
3%

Figure 2: Composition of Intro to Media Computation by
major college

6.3. Do students take advantage of the
creative aspects of the course?

Survey responses, homework assignments and

interviews with media computation students all

indicated that students were not only enjoying the
material, they were also taking advantage of the
creative aspects of the course and doing interesting
things on their own. Some students preferred working
in audio, some with images, and many reported that
learning how the Web works and creating their own
pages was the most enjoyable aspect of the course.

Many students were clearly excited about the
potential for using media in ways they had not
previously encountered. Two students reported on the
midterm survey that they had written programs to
reverse popular songs, in order to find out if there
were hidden messages. One student reported using
Python to create an online scrapbook. Students often
turned in homework assignments that included far
more complex code than was required. For one
homework assignment, students were directed to
create a collage in which the same image appeared at
least three times with some different visual
manipulation each time. As can be seen in the
example in Figure 2 (which was showcased by
voluntary public posting on the collaborative
website), many students accomplished considerably
more than the minimum requirements. Some
programs reached over 100 lines in length.

Figure 2: Example of Student Homework (Full color
examples of student work can be found at:
http://coweb.cc.gatech.edu/cs1315)

In interviews, several students indicated that they
considered programming media to be something fun
and useful beyond the completion of assignments.
Two students revealed that they simply had not had
enough time to play with the programming
environment as much as they wanted to, and both
stated that they would not remove the programming
environment from their computers:

Interviewer: What do you think about the

homework galleries on the CoWeb?
Student: I don’t ever look at it until after I’m done, I

have a thing about not wanting to copy someone
else’s ideas. I just wish I had more time to play
around with that and make neat effects. But JES
will be on my computer forever, so… that’s the
nice thing about this class is that you could go as
deep into the homework as you wanted. So, I’d
turn it in and then me and my roommate would
do more after to see what we could do with it.

Interviewer: Have you ever written code outside of

assignments?
Student: Sometimes I would write other stuff on my

way to an assignment but not just like I sat down
and wrote something. I don’t have time to play
with it. Like, I’m not gonna delete JES off my
computer, and I may play with it when I get some
free time later on, but not yet.

6.4. How does collaboration affect student
performance and perception of the course?

We have a basic understanding of the affordances
of digital media such as photographs, sounds,
animations, and text for computational learning, but
still have not addressed the social conditions in which
this learning is to take place. Robert Kozma observed
that the conditions for learning through media are
more complex than the simple presence of that
media; thus, he argues, “our media theories and
research must reflect both the capabilities of media
and the complexities of the social situations in which
they arise” [25]. One important social aspect of the
media computation course is the liberal collaboration
policy: students are allowed to collaborate as much as
they wish on homework assignments.

Many students reported that the collaboration
policy positively influenced their experience in the
course. On the final survey, over 20% named
collaboration as the one aspect of the course that
should not change. When asked on the midterm
survey for their opinion of the collaboration policy,
over 95% gave a positive response. Many students
explained that collaborating led them to a deeper
understanding of the material because it provides an

opportunity to talk about problems and their
solutions. (Exam scores averaged nearly 80%,
indicating that the students were not simply using the
collaboration policy as an opportunity to copy code.)
Overall, nearly 40% of the responses to the
collaboration question mentioned improved learning.
Other responses indicated that students felt more
confident about their solutions after discussing them
with peers, and that the collaboration policy provided
them with an alternate avenue for seeking help. Some
students simply felt that collaborating made the class
more fun:

Interviewer: Did you collaborate? Do you have any

thoughts on collaboration?
Student: My roommate and I… we took full

advantage of the collaboration. It was more just
the ideas bouncing off each other. I don’t think
this class would have been as much fun if I
wasn’t able to collaborate.

Whereas we have seen that programming

experience is a good indicator of success in computer
science [22], [23], one study found that the best
indicator is students’ comfort in the classroom [24].
We hoped that collaborative activities would help
establish a relaxed classroom culture in which
students felt comfortable asking questions and
seeking help. In order to encourage a less
competitive, more supportive learning environment,
students were encouraged to ask questions and post
comments to a collaborative website (CoWeb). When
asked about her use of the CoWeb, one female
student made it clear that she felt not having
computer science majors in CS1315 made it easier
for the non-majors to ask questions and get help:

Interviewer: Have you ever posted to the CoWeb?
Student: I think I’ve posted to everything.

Sometimes I’ll just make random comments.
Sometimes I ask a specific question and he [the
professor] asks for clarification. I would feel
different in a class with a bunch of CS majors.
But since we are there with a bunch of
management—other students—it’s kind of more
comfortable.

Another student suggested that the anonymous

nature of the CoWeb made it easier to ask questions,
particularly early in the semester when concepts are
still new and students may still feel that their
questions are “dumb”:

Interviewer: Have you consistently felt comfortable

asking questions?
Student: Not at the beginning. One on one, yes. In

lecture, not at the beginning because I felt that I

was so far behind other people and the ones who
were putting things on the web were the ones
who really know stuff. But now I have no
problem.

Interviewer: Have you felt comfortable posting on
the CoWeb?

Student: Yes.
Interviewer: Do you think the CoWeb is beneficial?
Student: Yes. And there’s no reason to feel

uncomfortable because if you feel dumb, just
don’t put your name at the end! I did that a few
times.

6.5. How do female students respond to the
course?

When asked what they liked best about the class,
female media computation students were more likely
to name content than any other feature of the course.
When asked what they liked least, the most common
response was a specific activity such as exams or
homework, followed by the amount and pace of the
work. Overall, survey and grade data indicates that
female students’ responses to the pilot course
offering were extremely encouraging, but we were
interested in a more qualitative and comprehensive
view of female students’ experiences in media
computation. We wanted to know whether they felt
comfortable in class, and whether they felt
competent; whether they felt that media computation
was worthwhile and engaging.

A series of interviews allowed us to capture the
experiences of a few female students. All of the
interviewees reported a positive experience in
introductory computer science. One student summed
up her media computation experience in the
following transcript:

Interviewer: What is the most surprising, or

interesting thing you’ve learned?
Student: That it’s fun. I know that’s not specific.
Interviewer: “It” being CS, or programming, or

what?
Student: Both. The history of the computer and the

Web. And that programming is not scary, it is
actually pretty cool and when you make a
program that actually runs it’s a really good
feeling. I didn’t expect to enjoy it at all because
all I’d heard were just the bad stories…

When asked whether or not media computation

should continue to be offered, all of the female
students interviewed at the end of the semester made
a direct comparison to the traditional introductory
computer science course, suggesting that the content
of media computation is more meaningful to them.
One student even stated that:

1321 [traditional CS], from what I’ve heard from
people, is not cut out for everybody and it’s not
fair for the university to demand that we do that
stuff when there is so much other exciting stuff
you could be doing.

Some studies suggest that computer science
classrooms have developed a culture that is
uncongenial to women, or is perceived as being so
[19], [18], [20]. The reasons for this perception are
not well understood, and some may have more to do
with popular culture (the unpopular “geek”), or
gender differences in social practice than with actual
classroom practices. Still, we expect the kinds of
collaborative practices described in the preceding
section to help alleviate some of the negative
perceptions of computer culture identified in the
research. Female interviewees repeatedly expressed
wonder at the discovery that computer science did
not have to be either boring, asocial or uncreative:

Interviewer: Has the class provided any additional
insight into computer science?

Student: Most certainly. I have seen that there is
humor, there’s color, there’s more than just lines
and lines and lines of code that have lots of
colons and dots and parentheses that no one could
really understand.

Later: [the professor] is so good at what he does,
especially expressing that computer science is not
some black screen computer nerd type thing.

All of the students interviewed at the end of the

course expressed feelings of competence and
indicated that they felt they understood enough to go
farther in computer science. When asked whether
they plan to take more computer science, very few
female media computation students responded
affirmatively (6%); however, when asked whether
they would be interested in taking advanced media
computation, which is not currently offered, the
number rose to over 60%. Given the traditional
selection of computer science courses, most of these
students apparently do not see a compelling reason to
take more than what is required. This indicates that
media computation has captured the interest of many
female students who otherwise would not choose to
pursue computer science learning. A particularly
striking example of confidence can be found in the
remarks of one interviewee at the end of the course:

Interviewer: Has this class changed your opinion of
computer science?

Student: YES, I’m not intimidated by it anymore.
My mom was SO surprised when I told her I
want to be a TA she almost fell on the floor, cuz

she’s heard me complain for years about taking
this class and now I want to go do it to myself
again!

6.6. Do students find media computation
relevant and/or useful?

One indicator of students’ attitudes toward a class
is the rate at which they drop the course. By drop
day, only three students (all male) had dropped media
computation—2.5% of 120 students. By the end of
the semester, the overall WFD rate had only reached
11.5%. (See Table 1.) Low withdrawal and high
success indicates that students’ attitudes toward
media computation were generally positive.

Drop Rate WFD Rate

Media Computation 2.5% 11.5%
Traditional Intro to CS 10.1% 42.9%
Table 1: Comparison of WFD and drop rates for two
introductory CS courses, Georgia Tech, spring 2003

Many students reported that they found the content
of the course useful. When asked what they liked best
about the course at midterm, approximately 20% of
media computation students indicated that they
enjoyed the content, while about 12% named the
usefulness of the content. In comparison, no students
in the traditional introductory computer science
course named usefulness of content as an attractive
feature of the course. In fact, 18% of traditional CS
students reported that there was nothing that they
liked about the course at all, while no media
computation students reported a complete aversion to
the course. These results confirm that media
computation is engaging many students that
traditional computer science does not.

Judging by survey responses, students seem to
think that media computation as a subject is relevant
and interesting. A number of students commented on
the fact that they feel it is important to understand
how the programs they use work. Others were
intrigued by the fact that they now understood the
digital effects they see on television and in movies.
When asked on the midterm survey what they liked
best about the class so far, students responded:

I dreaded CS, but ALL of the topics thus far have
been applicable to my future career (& personal)
plans—there isn't anything I don't like about this
class!!!”

I like that we work with useful applications of
code: processing sounds, images, movie clips,
etc. I like that the professor is most interested in
explaining everything so that the class

understands it.”

I think that we're doing things that I could
actually use as an architecture major- I like
dealing with pictures and sounds.

6.7 What did students learn?

We know that students do learn programming skills,
based on their performance on take-home
examinations where they had to program on their
own. Several of their programs were in the range of
25-75 lines of code, which is not insignificant in a
CS1 course. We did attempt to compare student
performance across three different CS1 courses
offered in Spring 2003, but were unsuccessful. The
variations in sequencing in the courses, differences in
how the problem was presented to the different
classes, the use of different languages, and the choice
of a known hard problem from the literature [26] led
to a floor effect for all courses and no significant
differences.

Based on performance on examinations, we believe
that the students learned about key computer science
ideas, especially those that were most relevant to the
media computation context. Whereas all CS1
courses discuss representation and encoding, it was
particularly relevant to students who care about the
number of colors available to them in a pixel color
encoding and what range of sounds can be encoded
given a sampling rate and sample size. Student
performance on these problems, dealing with issues
like number of bits in a sample or the Nyquist
theorem, was particularly strong, especially
considering that these are not topics that are typically
emphasized in CS1 courses.

7. Questions still unanswered

The pilot offering of the course offered glimpses of
a promising future for media literacy in the computer
age. We seem to have reached an audience that may
otherwise have been left behind as broader, more
computationally intensive forms of literacy become
important. But does familiarity with media
computation actually affect students’ abilities to
communicate through various media? Does
computational know-how transfer to other contexts?
In the future, we would like to investigate
relationships between general media computation
skills and students’ abilities to learn media-specific
applications like PhotoShop or to use digital audio
equipment. The advantages of traditional, text-based
literacy in our society are clear. When we can define

the advantages of media literacy with the same
confidence and clarity, we will be able to better
motivate and engage students.

Does media computation have any affect on
students’ long-term decisions regarding computer
science learning? In particular, are female students
who take media computation as an introduction to
computer science more likely to pursue advanced
learning than those who take a traditional CS course?
We hope to continue this research in the form of a
longitudinal study; following female media
computation students throughout their undergraduate
careers. We are exploring the possibility of an
advanced media computation course, and have hopes
that the development of such a course will lead to
record numbers of non-CS, non-engineering students
taking elective computer science at Georgia Tech. In
addition, we are in the process of exploring a high
school level media computation course. While it
often does, media literacy should not begin at the
university level. All high school students can benefit
from a positive experience with computer science and
we believe that female high school students have as
much (if not more) to gain from an improved
introductory computer science experience as their
undergraduate counterparts.

Finally, if the course succeeds at Georgia Tech
with the current instructor, can it succeed at Georgia
Tech with other instructors and at other institutions?
Two other institutions have already implemented
their own versions of the media computation course
that use Georgia Tech material as a foundation. We
plan to collect data from other institutions that
implement courses using the materials developed at
Georgia Tech, and from future sections of Media
Computation at Georgia Tech that will be taught by a
variety of instructors.

8. Conclusions

Literacy is a hard-won competency. Those who are

literate read and write with a natural ease that belies
the effort they put into learning to read and learning
to write. For college students, the difficulty of
achieving media literacy is an even more difficult
feat, competing with other interests and other
demands on their attention. Media computation is not
a panacea for the ills of computer science education
and it does not make learning to program an easier
accomplishment. Still, results from this pilot course
offering indicate that media and computation together
provide a motivating framework for many students,
that it may encourage some students to excel who
would otherwise prefer not to try.

9. References

[1] A. diSessa, Changing Minds: computers, learning

and literacy, Cambridge, MA: MIT Press, 2000.
[2] A. Kay and A. Goldberg, "Personal dynamic

media," Computer, 1977, pp. 31-41.
[3] M. Resnick, A. Bruckman and F. Martin, "Pianos,

not stereos: creating computational construction
kits," Interactions, vol. 3, no. 6, 1996, pp. 41-49.

[4] S. Papert, "Situating constructionism,"
Constructionism: research reports and essays,
1985-1990, Harel, I. and Papert, S. Eds.Norwood,
N.J.: Ablex Pub. Corp., 1991, pp. 1-11.

[5] E. Soloway, M. Guzdial and K. Hay, "Reading and
writing in the 21st century," Communications of the
ACM, vol. 36, 1993, pp. 23-27.

[6] S. Papert, Mindstorms: Children, Computers and
Powerful Ideas, New York, NY: Basic Books,
1980.

[7] J. Comer and R. Roggio, "Teaching a Java-based
cs1 course in an academically-diverse environ-
ment," SIGSCE'02, pp. 142-146, 2002.

[8] N. Herrmann, J.C. Popyack, Zoski, Paul, C.D. Cera,
R. N. Lass and A. Nanjappa, "Redesigning
introductory computer programming using multi-
level online modules for a mixed audience," Eighth
Annual Innovation and Technology in Computer
Science Education (ITiCSE), 2003.

[9] M. Urban-Lurain and D. Weinshank, "Is there a role
for programming in non-major computer science
courses?," 30th ASEE/ IEEE Frontiers in Education
Conference, 2000.

[10] N. C. Statistics, Postsecondary Institutions in the
United States: Fall 2000 and Degrees and Other
Awards Conferred, Washington DC: U.S.
Department of Education, 2001.

[11] N. Nagappan, L. Williams, M. Ferzil, E. Wiebe, K.
Yang, C. Miller and S. Balik, "Improving the CS1
experience with pair programming," SIGCSE, pp.
359-362, 2003.

[12] D. Guerer and T. Camp, Investigating the Incredible
Shrinking Pipeline for Women in Computer
Science: final report, 2001.

[13] J. Marks, W. Freeman and H. Leitner, "Teaching
applied computing without programming: a case-
based introductory course for general education,"
32nd SIGCSE technical symposium on Computer
Science Education, pp. 80-84, 2001.

[14] G. W. Zimmerman and D.E. Eber, "When worlds
collide! An interdisciplinary course in virtual-reality
art," Thirty-second SIGCSE Technical Symposium
on Computer Science Education, pp. 75-79, 2001.

[15] W. Dann, T. Dragon, S. Cooper, K. Dietzler, K.
Ryan and R. Pausch, "Objects: visualization of
behavior and state," ITiCSE 2003: Proceedings of
the 8th Annual Conference on Innovation and
Technology in Computer Science Education, pp. 84-
88, 2003.

[16] N. Kock, R. Aiken and C. Sandas, "Using complex
it in specific domains: developing and assessing a

course for nonmajors," IEEE Transactions on
Education, vol. 45, no. 1, 2002, pp. 50-56.

[17] G. I. Planning, Enrollment, <http://www.irp.gatech.
edu/apps/Enrollment>.

[18] J. Margolis and A. Fisher, Unlocking the
Clubhouse: women in computing, Cambridge, MA:
MIT Press, 2002.

[19] A. E. Education, Tech-Savvy: educating girls in the
new computer age, Washington DC: American
Association of University Women Educational
Foundation, 2000.

[20] S. Turkle and S. Papert, "Epistomological pluralism
and the revaluation of the concrete," in
Constructionism Harel, I. and Papert, S. Eds. Ablex
Publishing Corp., 1992, pp. 161-191.

[21] Committee on Learning Research and Educational
Practice, How People Learn: bridging research and
practice, no. 09/04/2002, Donovan, S. et al. Eds.
Washington DC: National Academy Press, 1999,
pp. 9-22.

[22] Z. Kersteen, M. Linn, M. Clancey and C. Hardyck,
"Previous experience and the learning of computer
programming: the computer helps those who help
themselves," Journal of Educational Computing,
vol. 4, no. 3, 1988, pp. 321-334.

[23] H. Taylor and L. Mounfield, "Exploration of the
relationship between prior programming experience
and gender on success in college computer science,"
Journal of Educational Computing Research, vol.
11, no. 4, 1994, pp. 291-306.

[24] B.C. Wilson and S. Shrock, "Contributing to
success in an introductory computer science course:
a study of twelve factors," SIGSCE'01, pp. 184-188,
2001.

[25] R. Kozma, "Will media influence learning?
reframing the debate.," Educational Technology,
Research and Development, 5th EARLI Conference,
no. 2, pp. 1-31, 1993.

[26] E. Soloway, J. Bonar, & K. Ehrlich. “Cognitive
strategies and looping constructs: An empirical
study.” Communications of the ACM, vol 26, no11,
pp. 853-860, 1983.

